Tìm M để Bất Phương Trình Vô Nghiệm

Tìm m để bất phương trình vô nghiệm Bất phương trình chứa tham số lớp 10 Bài trước Tải về Bài sau Lớp: Lớp 10 Môn: Toán Dạng tài liệu: Chuyên đề Loại File: Word + PDF Phân loại: Tài liệu Tính phí

Tìm tham số m để bất phương trình vô nghiệm

  • I. Bất phương trình chứa tham số
  • II. Bài tập tìm m để bpt vô nghiệm
  • III. Bài tập tự rèn luyện củng cố kiến thức

Bạn đang học Toán 10 và gặp khó khăn với dạng bài bất phương trình chứa tham số? Một trong những yêu cầu quan trọng thường gặp là tìm m để bất phương trình vô nghiệm. Đây là dạng toán không chỉ rèn tư duy logic mà còn đòi hỏi bạn phải vận dụng linh hoạt điều kiện xác định, xét dấu và đánh giá biểu thức. Trong bài viết này, chúng ta sẽ cùng tìm hiểu chi tiết cách giải, các bước lập luận chặt chẽ và ví dụ minh họa rõ ràng để bạn nắm chắc kỹ năng xử lý bất phương trình chứa tham số lớp 10.

Tìm m để bất phương trình vô nghiệm vừa được VnDoc.com biên soạn và xin gửi tới bạn đọc cùng tham khảo. Mời các bạn cùng theo dõi bài viết dưới đây nhé.

Tài liệu do VnDoc.com biên soạn và đăng tải, nghiêm cấm các hành vi sao chép với mục đích thương mại.

Tìm m để bất phương trình vô nghiệm

A. Cách giải bất phương trình chứa tham số

Cho hàm số f\left( x \right)=a{{x}^{2}}+bx+c:\(f\left( x \right)=a{{x}^{2}}+bx+c:\)

f(x)<0\(f(x)<0\) vô nghiệm với \forall x\in \mathbb{R}\Leftrightarrow f(x)\ge 0\(\forall x\in \mathbb{R}\Leftrightarrow f(x)\ge 0\) có nghiệm với \forall x\in \mathbb{R}\(\forall x\in \mathbb{R}\)

\Rightarrow \left[ \begin{matrix}  a=0 \\  \left\{ \begin{matrix}  a>0 \\  \Delta \le 0 \\  \end{matrix} \right. \\  \end{matrix} \right.\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a>0 \\ \Delta \le 0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)

f(x)>0\(f(x)>0\) vô nghiệm với \forall x\in \mathbb{R}\Leftrightarrow f(x)\le 0\(\forall x\in \mathbb{R}\Leftrightarrow f(x)\le 0\) có nghiệm với \forall x\in \mathbb{R}\(\forall x\in \mathbb{R}\)

\Rightarrow \left[ \begin{matrix}  a=0 \\  \left\{ \begin{matrix}  a<0 \\  \Delta \le 0 \\  \end{matrix} \right. \\  \end{matrix} \right.\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a<0 \\ \Delta \le 0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)

f(x)\le 0\(f(x)\le 0\) vô nghiệm với \forall x\in \mathbb{R}\Leftrightarrow f(x)>0\(\forall x\in \mathbb{R}\Leftrightarrow f(x)>0\) có nghiệm với \forall x\in \mathbb{R}\(\forall x\in \mathbb{R}\)

\Rightarrow \left[ \begin{matrix}  a=0 \\  \left\{ \begin{matrix}  a>0 \\  \Delta <0 \\  \end{matrix} \right. \\  \end{matrix} \right.\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a>0 \\ \Delta <0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)

f(x)\ge 0\(f(x)\ge 0\) vô nghiệm với \forall x\in \mathbb{R}\Leftrightarrow f(x)<0\(\forall x\in \mathbb{R}\Leftrightarrow f(x)<0\) có nghiệm với \forall x\in \mathbb{R}\(\forall x\in \mathbb{R}\)

\Rightarrow \left[ \begin{matrix}  a=0 \\  \left\{ \begin{matrix}  a<0 \\  \Delta <0 \\  \end{matrix} \right. \\  \end{matrix} \right.\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a<0 \\ \Delta <0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)

B. Bài tập tìm m để bất phương trình vô nghiệm

Ví dụ 1: Tìm tham số m để bất phương trình \left( m+2 \right){{x}^{2}}+\left( m+3 \right)x-m>0\(\left( m+2 \right){{x}^{2}}+\left( m+3 \right)x-m>0\) vô nghiệm với mọi x\in \mathbb{R}\(x\in \mathbb{R}\)?

Hướng dẫn giải

TH1: m+2=0\Leftrightarrow m=-2  \Leftrightarrow -x+2>0\(m+2=0\Leftrightarrow m=-2 \Leftrightarrow -x+2>0\)

Vậy m = -2 thì bất phương trình có nghiệm.

TH2: m+2\ne 0\Leftrightarrow m\ne -2\(m+2\ne 0\Leftrightarrow m\ne -2\)

Để bất phương trình f(x)>0\(f(x)>0\) vô nghiệm x\in \mathbb{R}\(x\in \mathbb{R}\) thì f(x)\le 0\(f(x)\le 0\) có nghiệm với x\in \mathbb{R}\(x\in \mathbb{R}\)

\Leftrightarrow \left\{ \begin{matrix}  a<0 \\  \Delta \le 0 \\  \end{matrix} \right.  \Rightarrow \left\{ \begin{matrix}  m+2<0 \\  {{(m+3)}^{2}}+4\left( m+2 \right)\le 0 \\  \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}  m<-2 \\  5{{m}^{2}}+14m+9\le 0 \\  \end{matrix} \right.\(\Leftrightarrow \left\{ \begin{matrix} a<0 \\ \Delta \le 0 \\ \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} m+2<0 \\ {{(m+3)}^{2}}+4\left( m+2 \right)\le 0 \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} m<-2 \\ 5{{m}^{2}}+14m+9\le 0 \\ \end{matrix} \right.\)

\Leftrightarrow \left\{ \begin{matrix}  m <-2 \\  m\in [\dfrac{-9}{5};-1] \\  \end{matrix}\right.\(\Leftrightarrow \left\{ \begin{matrix} m <-2 \\ m\in [\dfrac{-9}{5};-1] \\ \end{matrix}\right.\)

Vậy không có giá trị nào của m để bất phương trình vô nghiệm.

Ví dụ 2: Cho bất phương trình m{{x}^{2}}-{{m}^{2}}-mx+4>0\(m{{x}^{2}}-{{m}^{2}}-mx+4>0\). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm \forall x\in \mathbb{R}\(\forall x\in \mathbb{R}\)?

Hướng dẫn giải

TH1: m=0\Leftrightarrow 4>0\(m=0\Leftrightarrow 4>0\) (loại).

TH2: m\ne 0\(m\ne 0\)

Để bất phương trình f(x)>0\(f(x)>0\) vô nghiệm x\in \mathbb{R}\(x\in \mathbb{R}\) thì f(x)\le 0\(f(x)\le 0\) có nghiệm với mọi x\in \mathbb{R}\(x\in \mathbb{R}\)

\Leftrightarrow \left\{ \begin{matrix}  a<0 \\  \Delta \le 0 \\  \end{matrix} \right.  \Rightarrow\left\{ \begin{matrix}  m<0 \\  \Delta \le 0 \\  \end{matrix} \right.\(\Leftrightarrow \left\{ \begin{matrix} a<0 \\ \Delta \le 0 \\ \end{matrix} \right. \Rightarrow\left\{ \begin{matrix} m<0 \\ \Delta \le 0 \\ \end{matrix} \right.\)

\Leftrightarrow \left\{ \begin{matrix}  m<0 \\  {{m}^{2}}-4m\left( 4-{{m}^{2}} \right)\le 0 \\  \end{matrix} \right.\(\Leftrightarrow \left\{ \begin{matrix} m<0 \\ {{m}^{2}}-4m\left( 4-{{m}^{2}} \right)\le 0 \\ \end{matrix} \right.\)

\Leftrightarrow m\in (-\infty ,\frac{-1-\sqrt{257}}{8}]\(\Leftrightarrow m\in (-\infty ,\frac{-1-\sqrt{257}}{8}]\)

Vậy BPT vô nghiệm khi m\in (-\infty ,\frac{-1-\sqrt{257}}{8}]\(m\in (-\infty ,\frac{-1-\sqrt{257}}{8}]\)

Ví dụ 3: Cho bất phương trình m{{x}^{2}}-2\left( m+1 \right)x+m+7\le 0\(m{{x}^{2}}-2\left( m+1 \right)x+m+7\le 0\). Tìm tham số m để bất phương trình vô nghiệm \forall x\in \mathbb{R}\(\forall x\in \mathbb{R}\)?

Hướng dẫn giải

TH1: m=0\Leftrightarrow 7\le 0\(m=0\Leftrightarrow 7\le 0\) (loại).

TH2: m\ne 0\(m\ne 0\)

Để bất phương trình f(x)\le 0\(f(x)\le 0\) vô nghiệm x\in \mathbb{R}\(x\in \mathbb{R}\) thì f(x)>0\(f(x)>0\) có nghiệm với mọi x\in \mathbb{R}\(x\in \mathbb{R}\)

\Leftrightarrow \left\{ \begin{matrix}  a>0 \\  \Delta <0 \\  \end{matrix} \right.\(\Leftrightarrow \left\{ \begin{matrix} a>0 \\ \Delta <0 \\ \end{matrix} \right.\)

Từ khóa » đk Của Bất Phương Trình