Tìm M để Bất Phương Trình Vô Nghiệm
Có thể bạn quan tâm
Tìm tham số m để bất phương trình vô nghiệm
- I. Lí thuyết cần nhớ
- II. Bài tập ví dụ minh họa
- III. Bài tập tự rèn luyện củng cố kiến thức
Tìm m để bất phương trình vô nghiệm vừa được VnDoc.com biên soạn và xin gửi tới bạn đọc cùng tham khảo. Mời các bạn cùng theo dõi bài viết dưới đây nhé.
Tài liệu do VnDoc.com biên soạn và đăng tải, nghiêm cấm các hành vi sao chép với mục đích thương mại.
Tìm m để bất phương trình vô nghiệm
I. Lí thuyết cần nhớ
Cho hàm số \(f\left( x \right)=a{{x}^{2}}+bx+c:\)
\(f(x)<0\) vô nghiệm với \(\forall x\in \mathbb{R}\Leftrightarrow f(x)\ge 0\) có nghiệm với \(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a>0 \\ \Delta \le 0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)
\(f(x)>0\) vô nghiệm với \(\forall x\in \mathbb{R}\Leftrightarrow f(x)\le 0\) có nghiệm với \(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a<0 \\ \Delta \le 0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)
\(f(x)\le 0\) vô nghiệm với \(\forall x\in \mathbb{R}\Leftrightarrow f(x)>0\) có nghiệm với \(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a>0 \\ \Delta <0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)
\(f(x)\ge 0\) vô nghiệm với \(\forall x\in \mathbb{R}\Leftrightarrow f(x)<0\) có nghiệm với \(\forall x\in \mathbb{R}\)
\(\Rightarrow \left[ \begin{matrix} a=0 \\ \left\{ \begin{matrix} a<0 \\ \Delta <0 \\ \end{matrix} \right. \\ \end{matrix} \right.\)
II. Bài tập ví dụ minh họa
Ví dụ 1: Tìm m để BPT \(\left( m+2 \right){{x}^{2}}+\left( m+3 \right)x-m>0\) vô nghiệm với mọi \(x\in \mathbb{R}\)
Hướng dẫn giải
TH1: \(m+2=0\Leftrightarrow m=-2 \Leftrightarrow -x+2>0\)
Vậy m = -2 thì bất phương trình có nghiệm
TH2: \(m+2\ne 0\Leftrightarrow m\ne -2\)
Để bất phương trình \(f(x)>0\) vô nghiệm \(x\in \mathbb{R}\) thì \(f(x)\le 0\) có nghiệm với \(x\in \mathbb{R}\)
\(\Leftrightarrow \left\{ \begin{matrix} a<0 \\ \Delta \le 0 \\ \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} m+2<0 \\ {{(m+3)}^{2}}+4\left( m+2 \right)\le 0 \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} m<-2 \\ 5{{m}^{2}}+14m+9\le 0 \\ \end{matrix} \right.\)
\(\Leftrightarrow \left\{ \begin{matrix} m <-2 \\ m\in [\dfrac{-9}{5};-1] \\ \end{matrix}\right.\)
Vậy không có giá trị nào của m để bất phương trình vô nghiệm
Ví dụ 2: Cho bất phương trình \(m{{x}^{2}}-{{m}^{2}}-mx+4>0\). Tìm m để bất phương trình vô nghiệm \(\forall x\in \mathbb{R}\)
Hướng dẫn giải
TH1: \(m=0\Leftrightarrow 4>0\) (loại)
TH2: \(m\ne 0\)
Để bất phương trình \(f(x)>0\) vô nghiệm \(x\in \mathbb{R}\) thì \(f(x)\le 0\) có nghiệm với mọi \(x\in \mathbb{R}\)
\(\Leftrightarrow \left\{ \begin{matrix} a<0 \\ \Delta \le 0 \\ \end{matrix} \right. \Rightarrow\left\{ \begin{matrix} m<0 \\ \Delta \le 0 \\ \end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix} m<0 \\ {{m}^{2}}-4m\left( 4-{{m}^{2}} \right)\le 0 \\ \end{matrix}\Leftrightarrow m\in (-\infty ,\frac{-1-\sqrt{257}}{8}] \right.$\)
Vậy BPT vô nghiệm khi \(m\in (-\infty ,\frac{-1-\sqrt{257}}{8}]\)
Ví dụ 3: Cho bất phương trình \(m{{x}^{2}}-2\left( m+1 \right)x+m+7\le 0\). Tìm m để bất phương trình vô nghiệm \(\forall x\in \mathbb{R}\)
Hướng dẫn giải
TH1: \(m=0\Leftrightarrow 7\le 0\) (loại)
TH2: \(m\ne 0\)
Để bất phương trình \(f(x)\le 0\) vô nghiệm \(x\in \mathbb{R}\) thì \(f(x)>0\) có nghiệm với mọi \(x\in \mathbb{R}\)
\(\Leftrightarrow \left\{ \begin{matrix} a>0 \\ \Delta <0 \\ \end{matrix} \right.\)
Từ khóa » Cách Giải Tìm M để Bất Phương Trình Vô Nghiệm
-
Tìm M để Bất Phương Trình Vô Nghiệm | Chuyên đề Toán
-
Tìm M để Bất Phương Trình Vô Nghiệm
-
Tìm M để Bất Phương Trình Vô Nghiệm
-
TOÁN 10 - TÌM M ĐỂ BẤT PHƯƠNG TRÌNH VÔ NGHIỆM VÀ ...
-
Bất Phương Trình Bậc Nhất Vô Nghiệm Khi Nào
-
Tìm M để Bất Phương Trình Vô Nghiệm - MarvelVietnam
-
Tìm Tất Cả Các Giá Trị Của Tham Số M để Hệ Bất Phương Trình Vô Nghiệm
-
Tìm M để Bất Phương Trình Có Vô Số Nghiệm
-
Giải Và Biện Luận Bất Phương Trình Bậc Nhất Một ẩn
-
Tìm M để Bất Phương Trình Vô Nghiệm: Mx^2 - Toán Học Lớp 10 - Lazi
-
Tìm M để Bất Phương Trình Bậc Hai Có Nghiệm
-
Tìm M để Bất Phương Trình Vô Nghiệm – Tất Tần Tật Về BPT - 123doc
-
Tìm điều Kiện Của Tham Số để Phương Trình Bậc Hai Vô Nghiệm
-
Cách Chứng Minh Phương Trình Vô Nghiệm Hay Nhất - TopLoigiai