Tìm M để Phương Trình Trùng Phương Vô Nghiệm, Có 1, 2, 3, 4 Nghiệm

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm
  • HOT Sale 40% sách cấp tốc Toán - Văn - Anh vào 10 ngày 02-02 trên Shopee mall
Trang trước Trang sau

Bài viết Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm.

  • Cách giải bài tập Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm
  • Bài tập vận dụng Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

(199k) Xem Khóa học Toán 9 KNTTXem Khóa học Toán 9 CDXem Khóa học Toán 9 CTST

A. Phương pháp giải

Cho phương trình  ax4 + bx2 + c = 0 (a ≠ 0)    (1)

Đặt t = x2 (t ≥ 0), khi đó phương trình (1) trở thành: at2 + bt + c = 0 (2)

+ Để phương trình (1) vô nghiệm thì phương trình (2) vô nghiệm hoặc có nghiệm âm

+ Để phương trình (1) có 1 nghiệm thì phương trình (2) có nghiệm kép t = 0 hoặc có1 nghiệm âm và 1 nghiệm bằng 0

+ Để phương trình (1) có 2 nghiệm thì phương trình (2) có nghiệm kép dương hoặc có 2 nghiệm trái dấu

+ Để phương trình (1) có 3 nghiệm thì phương trình (2) có 1 nghiệm bằng 0 và 1 nghiệm dương

+ Để phương trình (1) có 4 nghiệm thì phương trình (2) có 2 nghiệm dương phân biệt

Ví dụ 1: Cho phương trình  x4 – 2(m + 4)x2 + m2 = 0 (1). Tìm m để phương trình (1)

a. Có nghiệm

b. Có 1 nghiệm

c. Có 2 nghiệm phân biệt

d. Có 3 nghiệm phân biệt

e. Có 4 nghiệm phân biệt

Giải

Đặt t = x2, khi đó phương trình (1) trở thành:  t2 – 2(m + 4)t + m2 = 0 (2)

a. Để phương trình (1) vô nghiệm thì phương trình (2) vô nghiệm hoặc có nghiệm âm

+ Xét TH1: Phương trình (2) vô nghiệm ⇔ Δ' < 0

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

+ Xét TH2: Phương trình (2) có nghiệm âm Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Vậy với m < -2 thì phương trình (1) vô nghiệm

b. Để phương trình (1) có 1 nghiệm thì phương trình (2) có nghiệm kép t = 0 hoặc có1 nghiệm âm và 1 nghiệm bằng 0

Vì t = 0 là nghiệm của phương trình (2) nên thay t = 0 vào (2) ta được:

m2 = 0 ⇔ m = 0

Với m = 0 thì phương trình (2) có dạng:  

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Suy ra m = 0 không thỏa mãn

Vậy không có giá trị nào của m để phương trình (1) có 1 nghiệm

c. Để phương trình (1) có 2 nghiệm thì phương trình (2) có nghiệm kép dương hoặc có 2 nghiệm trái dấu

+ Xét TH1: phương trình (2) có nghiệm kép dương

∆ꞌ = 8m + 16 = 0 ⇔ m = -2

Với m = -2 thì phương trình (2) có nghiệm kép Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Suy ra m = -2 thỏa mãn

+ Xét TH2: phương trình (2) có 2 nghiệm trái dấu ⇔ a.c < 0

⇔ m2 < 0 (bất phương trình vô nghiệm )

Vậy với m = -2 thì phương trình (1) có 2 nghiệm phân biệt

d. Để phương trình (1) có 3 nghiệm thì phương trình (2) có 1 nghiệm bằng 0 và 1 nghiệm dương

theo kết quả câu (b) ta có với m = 0 thì phương trình (2) có 2 nghiệm: t = 0, t = 8

Suy ra m = 0 thỏa mãn

Vậy với m = 0 thì phương trình (1) có 3 nghiệm phân biệt

e. Để phương trình (1) có 4 nghiệm thì phương trình (2) có 2 nghiệm dương phân biệt       

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Vậy với m > -2 và m ≠ 0 thì phương trình (1) có 4 nghiệm phân biệt

Ví dụ 2: Tìm m để phương trình  (m – 1)x4 + 2(m – 3)x2 + m + 3 = 0 (1) vô nghiệm

Giải

Đặt t = x2 (t ≥ 0), khi đó phương trình (1) trở thành: (m – 1)t2 + 2(m – 3)t + m + 3 = 0 (2)

Nếu m = 1 thì phương trình (2) có dạng: -4t + 4 = 0 ⇔ t = 1

Với t = 1 ⇒ x2=1 ⇔ x=±1

Suy ra m = 1 không thỏa mãn

Nếu m ≠ 1 thì phương trình (2) là phương trình bậc hai

Để phương trình (1) vô nghiệm thì phương trình (2) vô nghiệm hoặc có nghiệm âm

+ Xét TH1: phương trình (2) vô nghiệm ⇔ Δ' < 0 

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

+ Xét TH2: Phương trình (2) có nghiệm âm Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Kết hợp điều kiện m ≠ 1 ta có với m < -3 hoặc m > 3/2 thì phương trình (1) vô nghiệm

B. Bài tập

Câu 1: Số giá trị của m để phương trình  mx4 + 5x2 – 1 = 0 (1) có 2 nghiệm phân biệt là

A. 1

B. 2

C. 3

D. vô số

Giải

Đặt t = x2 (t ≥ 0), khi đó phương trình (1) trở thành:  mt2 + 5t - 1 = 0 (2)

Nếu m = 0 thì phương trình (2) có dạng: Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Suy ra m = 0 thỏa mãn

Nếu m ≠ 0 thì phương trình (2) là phương trình bậc hai

Để phương trình (1) có 2 nghiệm phân biệt thì phương trình (2) có nghiệm kép dương hoặc có 2 nghiệm trái dấu

+ Xét TH1: phương trình (2) có nghiệm kép dương

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Với Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm  thì phương trình (2) có nghiệm kép:

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Suy ra Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm thỏa mãn

+ Xét TH2: phương trình (2) có 2 nghiệm trái dấu ⇔ a.c < 0

⇔ -m < 0 ⇔ m > 0

Kết hợp điều kiện m ≠ 0 ta có với m = 0, Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm, m > 0 thì phương trình (1) có 2 nghiệm phân biệt

Đáp án là D

Câu 2: Tìm m để phương trình  x4 – (3m + 4)x2 + 12m = 0 (1) có 4 nghiệm phân biệt là

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Giải

Đặt t = x2 (t ≥ 0), khi đó phương trình (1) trở thành:  t2 – (3m + 4)t + 12m = 0 (2)

Để phương trình (1) có 4 nghiệm phân biệt thì phương trình (2) có 2 nghiệm dương phân biệt

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Vậy với m > 0 và m ≠ 4/3 thì phương trình (1) có 4 nghiệm phân biệt

Đáp án là B

Câu 3: Số giá trị của m để phương trình  x4 – (m + 2)x2  + m = 0 (1) có 3 nghiệm phân biệt là

A. 1

B. 3

C. 5

D. vô số

Giải

Đặt t = x2 (t ≥ 0), khi đó phương trình (1) trở thành:  t2 – (m + 2)t + m = 0 (2)

Để phương trình (1) có 3 nghiệm phân biệt thì phương trình (2) có 1 nghiệm bằng 0 và 1 nghiệm dương

Vì t = 0 là nghiệm của phương trình (2) nên thay t = 0 vào (2) ta được: m = 0

Với m = 0 thì phương trình (2) có dạng:  

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Suy ra m = 0 thỏa mãn

Vậy với m = 0 thì phương trình (1) có 3 nghiệm phân biệt

Đáp án là A

Câu 4: Tìm m để phương trình  x4 + (1 – 2m)x2 + m2 - 1 = 0 (1) vô nghiệm

A. không tồn tại m                       

B. m < -1 hoặc m > 5/4

C. m > -1 hoặc m < -3

D. m > 2 hoặc m < -1

Giải

Đặt t = x2 (t ≥ 0), khi đó phương trình (1) trở thành:  t2 + (1 – 2m)t + m2 -1 = 0 (2)

Để phương trình (1) vô nghiệm thì phương trình (2) vô nghiệm hoặc có nghiệm âm

+ Xét TH1: Phương trình (2) vô nghiệm ⇔ Δ < 0

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

+ Xét TH2: Phương trình (2) có nghiệm âm Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Vậy với m < -1 hoặc m > 5/4 thì phương trình (1) vô nghiệm

Đáp án là B

Câu 5: Số giá trị của m để phương trình  mx4 – 2(m – 1)x2 + m – 1 = 0 (1) có 1 nghiệm là

A. 0

B. 1

C. 2

D. vô số

Giải

Đặt t = x2 (t ≥ 0), khi đó phương trình (1) trở thành:  mt2 – 2(m – 1)t + m - 1 = 0 (2)

Nếu m = 0 thì phương trình (2) có dạng:  2t - 1 = 0 ⇔ t = 1/2

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Suy ra m = 0 không thỏa mãn đề bài

Nếu m ≠ 0 thì phương trình (2) là phương trình bậc hai

Để phương trình (1) có 1 nghiệm thì phương trình (2) có nghiệm kép t = 0 hoặc có1 nghiệm âm và 1 nghiệm bằng 0

Vì t = 0 là nghiệm của phương trình (2) nên thay t = 0 vào (2) ta được:

m - 1 = 0 ⇔ m = 1

Với m = 1 thì phương trình (2) có dạng: t2 = 0 ⇔ t = 0 ⇒ x2 = 0 ⇔ x = 0

Suy ra m = 1 thỏa mãn đề bài

Vậy với m = 1 thì  phương trình (1) có 1 nghiệm

Đáp án là B

Câu 6: Tìm m để phương trình  (m + 2)x4 + 3x2 - 1 = 0 (1) có 4 nghiệm phân biệt

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Giải

Đặt t = x2 (t ≥ 0), khi đó phương trình (1) trở thành:  (m + 2)t2 + 3t -1 = 0 (2)

Để phương trình (1) có 4 nghiệm phân biệt thì phương trình (2) là phương trình bậc hai có 2 nghiệm dương phân biệt  

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Vậy với Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm thì phương trình (1) có 4 nghiệm phân biệt

Đáp án là C

Câu 7: Tìm m để phương trình  (m - 2)x4 – 2(m + 1)x2 + m - 1 = 0 (1) có 3 nghiệm phân biệt

A. m = 1                

B. m = -1

C. m = 0         

D. không tồn tại m

Giải

Đặt t = x2 (t ≥ 0), khi đó phương trình (1) trở thành:  (m - 2)t2 – 2(m + 1)t + m -1 = 0 (2)

Để phương trình (1) có 3 nghiệm phân biệt thì phương trình (2) phải là phương trình bậc hai có 2 nghiệm ,trong đó một nghiệm bằng 0 và một nghiệm dương

Vì t = 0 là nghiệm của phương trình (2) nên thay t = 0 vào (2) ta được:

m - 1 = 0 ⇔ m = 1

Với m = 1 thì phương trình (2) có dạng:

Tìm m để phương trình trùng phương vô nghiệm, có 1, 2, 3, 4 nghiệm

Suy ra m = 1 không thỏa mãn đề bài

Vậy không có giá trị nào của m để phương trình (1) có 3 nghiệm

Đáp án là D

(199k) Xem Khóa học Toán 9 KNTTXem Khóa học Toán 9 CDXem Khóa học Toán 9 CTST

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác:

  • Cách giải và biện luận phương trình chứa ẩn ở mẫu cực hay
  • Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)(x + b)(x + c)(x + d) = 0)
  • Cách giải phương trình bậc bốn bằng cách đặt t (dạng (x + a)4 + (x + b)4 = c)
  • Cách giải phương trình bậc bốn dạng ax4 + bx3 + cx2 ± kbx + k2a = 0
👉 Giải bài nhanh với AI Hay:
  • HOT 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k)

Tủ sách VIETJACK luyện thi vào 10 cho 2k11 (2026):

  • Bộ 50 đề thi vào 10 Toán, Văn, Anh 2026(250 trang - từ 99k/1 cuốn)
  • Cấp tốc 7,8,9+ Toán Văn Anh thi vào 10 (400 trang -từ 119k)
  • Giải mã đề thi vào 10 theo đề Hà Nội, Tp. Hồ Chí Minh (300 trang - từ 99k/1 cuốn)
  • Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án

TÀI LIỆU CLC DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

+ Bộ giáo án, bài giảng powerpoint, đề thi file word có đáp án 2025 tại https://tailieugiaovien.com.vn/

+ Hỗ trợ zalo: VietJack Official

+ Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đề thi vào 10 các sở Hà Nội, Tp. Hồ Chí Minh..

( 45 tài liệu )

Đề thi giữa kì, cuối kì 9

( 120 tài liệu )

Bài giảng Powerpoint Văn, Sử, Địa 9....

( 36 tài liệu )

Giáo án word 9

( 76 tài liệu )

Chuyên đề dạy thêm Toán, Lí, Hóa ...9

( 77 tài liệu )

Đề thi HSG 9

( 9 tài liệu )

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau chuong-4-ham-so-y-ax2-phuong-trinh-bac-hai-mot-an.jsp Giải bài tập lớp 9 sách mới các môn học
  • Giải Tiếng Anh 9 Global Success
  • Giải sgk Tiếng Anh 9 Smart World
  • Giải sgk Tiếng Anh 9 Friends plus
  • Lớp 9 Kết nối tri thức
  • Soạn văn 9 (hay nhất) - KNTT
  • Soạn văn 9 (ngắn nhất) - KNTT
  • Giải sgk Toán 9 - KNTT
  • Giải sgk Khoa học tự nhiên 9 - KNTT
  • Giải sgk Lịch Sử 9 - KNTT
  • Giải sgk Địa Lí 9 - KNTT
  • Giải sgk Giáo dục công dân 9 - KNTT
  • Giải sgk Tin học 9 - KNTT
  • Giải sgk Công nghệ 9 - KNTT
  • Giải sgk Hoạt động trải nghiệm 9 - KNTT
  • Giải sgk Âm nhạc 9 - KNTT
  • Giải sgk Mĩ thuật 9 - KNTT
  • Lớp 9 Chân trời sáng tạo
  • Soạn văn 9 (hay nhất) - CTST
  • Soạn văn 9 (ngắn nhất) - CTST
  • Giải sgk Toán 9 - CTST
  • Giải sgk Khoa học tự nhiên 9 - CTST
  • Giải sgk Lịch Sử 9 - CTST
  • Giải sgk Địa Lí 9 - CTST
  • Giải sgk Giáo dục công dân 9 - CTST
  • Giải sgk Tin học 9 - CTST
  • Giải sgk Công nghệ 9 - CTST
  • Giải sgk Hoạt động trải nghiệm 9 - CTST
  • Giải sgk Âm nhạc 9 - CTST
  • Giải sgk Mĩ thuật 9 - CTST
  • Lớp 9 Cánh diều
  • Soạn văn 9 Cánh diều (hay nhất)
  • Soạn văn 9 Cánh diều (ngắn nhất)
  • Giải sgk Toán 9 - Cánh diều
  • Giải sgk Khoa học tự nhiên 9 - Cánh diều
  • Giải sgk Lịch Sử 9 - Cánh diều
  • Giải sgk Địa Lí 9 - Cánh diều
  • Giải sgk Giáo dục công dân 9 - Cánh diều
  • Giải sgk Tin học 9 - Cánh diều
  • Giải sgk Công nghệ 9 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
  • Giải sgk Âm nhạc 9 - Cánh diều
  • Giải sgk Mĩ thuật 9 - Cánh diều

Từ khóa » điều Kiện Hàm Trùng Phương Có 3 Nghiệm