Tìm Nghiệm Của Các Phương Trình Sau Trong Khoảng đã Cho. Câu 16 ...
Có thể bạn quan tâm
Bài 16. Tìm nghiệm của các phương trình sau trong khoảng đã cho
a. \(\sin 2x = - {1 \over 2}\,\text{ với }\,0 < x < \pi \)
b. \(\cos \left( {x - 5} \right) = {{\sqrt 3 } \over 2}\,\text{ với }\, - \pi < x < \pi \)

a. Ta có: \(\sin 2x = - {1 \over 2} \Leftrightarrow \sin 2x = \sin \left( { - {\pi \over 6}} \right)\)
\( \Leftrightarrow \left[ {\matrix{{2x = - {\pi \over 6} + k2\pi } \cr {2x = {{7\pi } \over 6} + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = - {\pi \over {12}} + k\pi } \cr {x = {{7\pi } \over {12}} + k\pi } \cr} } \right.\,\,\left( {k \in \mathbb Z} \right)\)
Với điều kiện \(0 < x < π\) ta có :
* \(0 < - {\pi \over {12}} + k\pi < \pi \Leftrightarrow {1 \over {12}} < k < {{13} \over {12}}\,\,k \in\mathbb Z\)
Nên\( k = 1\), khi đó ta có nghiệm \(x = {{11\pi } \over {12}}\)
* \(0 < {{7\pi } \over {12}} + k\pi < \pi \Leftrightarrow - {7 \over {12}} < k < {5 \over {12}}\,\,k \in\mathbb Z\)
Nên \(k = 0\), khi đó ta có nghiệm \(x = {{7\pi } \over {12}}\)
Vậy phương trình đã cho có hai nghiệm trong khoảng \((0 ; π)\) là :
Advertisements (Quảng cáo)
\(x = {{7\pi } \over {12}}\,\text{ và }\,x = {{11\pi } \over {12}}\)
b. \(\cos \left( {x - 5} \right) = {{\sqrt 3 } \over 2} \Leftrightarrow \left[ {\matrix{{x - 5 = {\pi \over 6} + k2\pi } \cr {x - 6 = - {\pi \over 6} + 5 + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = {\pi \over 6} + 5 + k2\pi } \cr {x = - {\pi \over 6} + 5 + k2\pi } \cr} } \right.\)
Ta tìm \(k\) để điều kiện \(–π < x < π\) được thỏa mãn.
Xét họ nghiệm thứ nhất :
\(\eqalign{ & - \pi < {\pi \over 6} + 5 + k2\pi \Leftrightarrow - 7\pi - 30 < 12k\pi < 5\pi - 30 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow - {7 \over {12}} - {{30} \over {12\pi }} < k < {5 \over {12}} - {{30} \over {12\pi }} \cr & Vi\, - 1,38 < - {7 \over {12}} - {{30} \over {12\pi }} < k < {5 \over {12}} - {{30} \over {12\pi }} < - 0,37\,\,k \in\mathbb Z\,\text{ nên }\, \cr & \,\,\,\,\, - 1,38 < k < - 0,37 \cr} \)
Chỉ có một giá trị \(k\) nguyên thỏa mãn các điều kiện đó là \(k = -1\).
Ta có nghiệm thứ nhất của phương trình là \(x = {\pi \over 6} + 5 - 2\pi = 5 - {{11\pi } \over 6}\)
Tương tự, xét họ nghiệm thứ hai :
\( - \pi < - {\pi \over 6} + 5 + k2\pi < \pi \Leftrightarrow - 5\pi - 30 < 12k\pi < 7\pi - 30.\) Vậy \(k = -1\)
Ta có nghiệm thứ hai của phương trình là \(x = - {\pi \over 6} + 5 - 2\pi = 5 - {{13\pi } \over 6}\)
Vậy : \(x = 5 - {{11\pi } \over 6}\,\text{ và }\,x = 5 - {{13\pi } \over 6}\)
Từ khóa » Giải Pt Trên đoạn
-
Tìm Nghiệm Của Phương Trình Lượng Giác Trong Khoảng, đoạn
-
Tìm Nghiệm Của Phương Trình Lượng Giác Trên Khoảng, đoạn
-
TÌM NGHIỆM THUỘC KHOẢNG (a;b) CỦA PHƯƠNG TRÌNH ...
-
Tìm Nghiệm Phương Trình Lượng Giác Trên Một Khoảng - Toán 11
-
Tìm Nghiệm Của Phương Trình Lượng Giác Trong ...
-
Tìm Nghiệm Của Phương Trình Lượng Giác Trong ...
-
Tìm Nghiệm Của Phương Trình Lượng Giác Trong Khoảng, đoạn
-
Tìm Nghiệm Của Phương Trình Lượng Giác Trên Khoảng, đoạn
-
Số Nghiệm Của Phương Trình Trên Một Khoảng
-
Các Dạng Toán Phương Trình Lượng Giác, Phương Pháp Giải Và Bài ...
-
Tìm Nghiệm Của Phương Trình Lượng Giác Trong Khoảng Đã Cho
-
Sử Dụng Máy Tính Cầm Tay Giải Nhanh Trắc Nghiệm Lượng Giác
-
Cách Giải Phương Trình Lượng Giác Có Chứa Tham Số M - Hayhochoi
-
Hỏi Trên đoạn ([ ( - 2017;2017) ] ), Phương Trình (( (sin X + 1