Tìm Nguyên Hàm Của Hàm Số \(f(x) = {2^{2x}}{.3^x}{.7^x}\).
Có thể bạn quan tâm
- Câu hỏi:
Tìm nguyên hàm của hàm số \(f(x) = {2^{2x}}{.3^x}{.7^x}\).
- A. \(\int {f(x)\,dx = \dfrac{{{{84}^x}}}{{\ln 84}} + C} \).
- B. \(\int {f(x)\,dx = \dfrac{{{2^{2x}}{3^x}{7^x}}}{{\ln 4.\ln 3.\ln 7}} + C} \).
- C. \(\int {f(x)\,dx = {{84}^x} + C} \).
- D. \(\int {f(x)\,dx = {{84}^x}\ln 84 + C} \).
Lời giải tham khảo:
Đáp án đúng: A
Ta có: \(\int {{2^{2x}}{3^x}{7^x}} dx = \int {{{84}^x}} dx = \int f(x)\,dx \)\(\,= \dfrac{{{{84}^x}}}{{\ln 84}} + C\)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 230514
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Phan Ngọc Hiển
40 câu hỏi | 60 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\) là mặt phẳng qua \(G\left( {1;2;3} \right)\) và cắt các trục \(Ox,Oy,Oz\) lần lượt tại các điểm \(A,B,C\) (khác gốc \(O\)) sao cho \(G\) là trọng tâm của tam giác \(ABC\). Khi đó mặt phẳng \(\left( \alpha \right)\) có phương trình:
- Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\)là mặt phẳng song song với mặt phẳng \(\left( \beta \right):2x - 4y + 4z + 3 = 0\) và cách điểm \(A\left( {2; - 3;4} \right)\) một khoảng \(k = 3\). Phương trình của mặt phẳng \(\left( \alpha \right)\) là:
- Trong không gian với hệ toạ độ \(Oxyz\),cho hai đường thẳng \({d_1},{d_2}\)lần lượt có phương trình
- Tìm \(I = \int {\dfrac{{{{\cos }^3}x}}{{1 + \sin x}}\,dx} \).
- Một vật chuyển động với vận tốc \(v(t) = 1,2 + \dfrac{{{t^2} + 4}}{{1 + 3}}\,\,\,(m/s)\). Quãng đường vật đi được sau 4s xấp xỉ bằng :
- Cho hai hàm số \(f(x) = {x^2},\,\,g(x) = {x^3}\). Chọn mệnh đề đúng :
- Đặt \(I = \int\limits_1^e {\ln x\,dx} \). Lựa chọn phương án đúng :
- Cho f(x) là hàm liên tục trên (a ; b) và không phải là hàm hằng. Giả sử F(x) là một nguyên hàm của f(x). Lựa chọn phương án đúng:
- Tính nguyên hàm \(\int {{{\left( {{e^3}} \right)}^{\cos x}}\sin x\,dx} \) ta được:
- Tính nguyên hàm \(\int {\dfrac{{2{x^2} - 7x + 7}}{{x - 2}}\,dx} \) ta được:
- Chọn phương án
- Chọn câu đúng. Tính nguyên hàm (int {{3^{{x^2}}}x,dx} ) ta được:
- Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {x.\cos \left( {a - x} \right)\,dx} \).
- Diện tích hình phẳng được giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng x = - 1 , x = - 2 .
- Tìm hàm số F(x) biết rằng và đồ thị của hàm số F(x) đi qua điểm .
- Xét hàm số f(x) có . Với a, b là các số thực và , khẳng định nào sau đây luôn đúng ?
- Biến đổi thành Khi đó f(t) là hàm nào trong các hàm số sau ?
- Cho hàm số f liên tục trên đoạn [0 ; 6]. Nếu \(\int\limits_1^5 {f(x)\,dx = 2\,,\,\,\int\limits_1^3 {f(x)\,dx = 7} } \) thì \(\int\limits_3^5 {f(x)\,dx} \) có giá trị bằng bao nhiêu ?
- Cho tích phân , nếu đặt thì:
- Biết . Phát biểu nào sau đây nhân giá trị đúng ?
- Tìm nguyên hàm của hàm số \(f(x) = {2^{2x}}{.3^x}{.7^x}\).
- Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt x - x\) và trục hoành.
- Tìm nguyên hàm của hàm số \(f(x) = \dfrac{{{{\left( {{x^2} - 1} \right)}^2}}}{{{x^2}}}\).
- Nguyên hàm của hàm số \(f(x) = \dfrac{{\cos 2x}}{{{{\cos }^2}x{{\sin }^2}x}}\) là:
- Tính tích phân \(\int\limits_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {\cot x\,dx} \) ta được kết quả là :
- Thể tích của khối tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường có phương trình \(y = {x^{\dfrac{1}{2}}}{e^{\dfrac{x}{2}}}\), trục Ox, x =1 , x = 2 quay một vòng quanh trục Ox bằng :
- Diện tích hình phẳng giới hạn bởi các đường thẳng y = 1, y = x và đồ thị hàm số \(y = \dfrac{{{x^2}}}{4}\) trong miền \(x \ge 0,y \le 1\) là \(\dfrac{a}{b}\). Khi đó b – a bằng:
- Cho \(I = \int\limits_0^1 {\left( {2x + 1} \right){e^x}\,dx} \). Đặt \(\left\{ \begin{array}{l}u = 2x + 1\\dv = {e^x}\,dx\end{array} \right.\). Chọn khẳng định đúng .
- Trong không gian với hệ trục tọa độ \(Oxyz\), gọi \((P)\)là mặt phẳng song song với mặt phẳng \(Oxz\) và cắt mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {z^2} = 12\)theo đường tròn có chu vi lớn nhất. Phương trình của \((P)\) là:
- Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Phương trình của \((\alpha )\) là:
- Trong không gian với hệ trục toạ độ Oxyz, cho mặt cầu , điểm . Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất ?
- Trong không gian với hệ toạ độ Oxyz, cho điểm N(1;1;1). Viết phương trình mặt phẳng (P) cắt các trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O sao cho N là tâm đường tròn ngoại tiếp tam giác ABC.
- Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm A(1;1;1), B(0;2;2) đồng thời cắt các tia Ox, Oy lần lượt tại hai điểm M, N (không trùng với gốc tọa độ\(O\)) sao cho OM = 2ON
- Trong không gian với hệ trục tọa độ \(Oxyz\), cho tứ diện \(ABCD\) có các đỉnh \(A\left( {1;2;1} \right)\), \(B\left( { - 2;1;3} \right)\), \(C\left( {2; - 1;3} \right)\) và \(D\left( {0;3;1} \right)\). Phương trình mặt phẳng \(\left( \alpha \right)\) đi qua \(A,B\) đồng thời cách đều \(C,D\)
- Cho các điểm \(I\left( {1;1; - 2} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = - 1 + t\\y = 3 + 2t\\z = 2 + t\end{array} \right.\). Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:
- Cho điểm \(I\left( {1;1; - 2} \right)\) đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y - 3}}{2} = \dfrac{{z - 2}}{1}.\) Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:
- Chọn câu đúng. Cho điểm (Ileft( {1;1; - 2} ight)) đường thẳng (d:dfrac{{x + 1}}{1} = dfrac{{y - 3}}{2} = dfrac{{z - 2}}{1}).
- Phương trình mặt cầu có tâm \(I\left( {3;\sqrt 3 ; - 7} \right)\) và tiếp xúc trục tung là:
- Phương trình mặt cầu có tâm \(I\left( {\sqrt 5 ;3;9} \right)\) và tiếp xúc trục hoành là:
- Chọn câu đúng. Ba đỉnh của một hình bình hành có tọa độ là(left( {1;1;1} ight),,left( {2;3;4} ight),,left( {7;7;5} ight)).
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn bài Người lái đò sông Đà
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 8 Lớp 12 Life in the future
Tiếng Anh 12 mới Unit 4
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Hoá Học 12 Chương 4
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Sinh Học 12 Chương 1 Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG môn Văn
Đàn ghi ta của Lor-ca
Quá trình văn học và phong cách văn học
Tây Tiến
Ai đã đặt tên cho dòng sông
Sóng- Xuân Quỳnh
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Nguyên Hàm Của 2x+3/x^2
-
Tìm Nguyên Hàm (3x^2-2x+3)/(x^3) | Mathway
-
Tìm Nguyên Hàm 3x^2+x-2 | Mathway
-
Tìm Nguyên Hàm Của Hàm Số Sau: ∫2x+3/x2+3x+5dx - Selfomy
-
Họ Nguyên Hàm Của Hàm Số Tích Phân Của 2x+3/2.x^2-x-1 Dx Là Chọn ...
-
Tìm Nguyên Hàm Của Hàm Số F(x) = 2^x . 3^(− 2x)
-
Một Nguyên Hàm Của Hàm Số F(x)=(x^2-2x+3)/(x+1) Là
-
F(x) Là Một Nguyên Hàm Của Hàm Số \(f\left( X \right) = \frac{{2x + 3 ...
-
Tính Nguyên Hàm (I=(( ((2)^(x))+((3)^(x)) ) ,(d)x). )
-
Họ Tất Cả Các Nguyên Hàm Của Hàm Số F(x) = 2x + 3 Là: A. X^2+3x+C.
-
Biết Tích Phân Từ 0 đến 1 Của 2x 3/2-x = Aln2 B. Thì Giá Trị Của A Là
-
Họ Tất Cả Các Nguyên Hàm Của Hàm Số F( X ) = 2x - 1( X + 1 )^2 Trên Kh
-
Cho F(x) Là Một Nguyên Hàm Của Hàm Số Fx=2x+1x4+2x3+x2 Trên ...
-
Nguyên Hàm Của Hàm Số $f\left( X \right) = {x^3} + 3x + 2 ...