Tìm Nguyên Hàm Của Hàm Số \(f(x) = {e^x}\left( {1 - 3{e^{ - 2x}}} \right)\).
Có thể bạn quan tâm
- Câu hỏi:
Tìm nguyên hàm của hàm số \(f(x) = {e^x}\left( {1 - 3{e^{ - 2x}}} \right)\).
- A. \(F(x) = {e^x} - 3{e^{ - 3x}} + C\).
- B. \(F(x) = {e^x} + 3{e^{ - x}} + C\).
- C. \(F(x) = {e^x} - 3{e^{ - x}} + C\).
- D. \(F(x) = {e^x} + C\).
Lời giải tham khảo:
Đáp án đúng: B
Ta có: \(\int {{e^x}\left( {1 - 3{e^{ - 2x}}} \right)\,dx} = \int {\left( {1 - \dfrac{3}{{{{\left( {{e^x}} \right)}^2}}}} \right)} \;d\left( {{e^x}} \right)\)\(\, = {e^x} + \dfrac{3}{{{e^x}}} + C = {e^x} + 3{e^{ - x}} + C\)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 229555
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Phú Nhuận
40 câu hỏi | 60 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây :
- Họ nguyên hàm của hàm số sau đây (f(x) = dfrac{{sin x}}{{{{cos }^2}x}}) là
- Nếu f(1) = 12, f’(x) liên tục và \(\int\limits_1^4 {f'(x)\,dx = 17} \) thì giá trị của f(4) bằng bao nhiêu ?
- Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = {x^2},\,\,y = 2x\) là:
- Cho f(x), g(x) là các hàm liên tục trên [a ; b]. Lựa chọn phương án đúng.
- Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta được:
- Nếu \(F(x) = \left( {a{x^2} + bx + c} \right){e^{ - x}}\) là một nguyên hàm của hàm số \(f(x) = \left( { - 2{x^2} + 7x - 4} \right){e^{ - x}}\) thì (a , b ,c) bằng bao nhiêu ?
- Cho hàm số \(y = f(x) = {x^3} - 3{x^2} - 4x\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số trên và trục Ox được tính bằng công thức:
- Cho \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} \,dx\,,\,\,u = {x^2} - 1} \). Khẳng định nào dưới đây sai ?
- Em tìm khẳng định sai trong các khẳng định sau:
- Tìm nguyên hàm của hàm số \(f(x) = {e^x}\left( {1 - 3{e^{ - 2x}}} \right)\).
- Cho \(\int\limits_1^4 {f(x)\,dx = 9} \). Tính tích phân \(I = \int\limits_0^1 {f(3x + 1)\,dx} \) .
- Cho f(x), g(x) là hai hàm số liên tục trên R và \(k \ne 0\). Chọn khẳng định sai trong các khẳng định sau đây .
- Cho số thực a thỏa mãn \(\int\limits_{ - 1}^a {{e^{x + 1}}} \,dx = {e^2} - 1\). Khi đó a có giá trị bằng:
- Tích phân \(I = \int\limits_{\dfrac{\pi }{3}}^{\dfrac{\pi }{2}} {\dfrac{{dx}}{{\sin x}}} \) có giá trị bằng:
- Tích phân \(I = \int\limits_1^e {2x\left( {1 - \ln x} \right)\,dx} \) bằng :
- Tìm \(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\).
- Diện tích hình phẳng giới hạn bởi \(y = {x^2} - x + 3,\,\,y = 2x + 1\) là:
- Hàm số y = sinx là một nguyên hàm của hàm số nào sau đây ?
- Tính nguyên hàm \(\int {\dfrac{{{{\left( {3\ln x + 2} \right)}^4}}}{x}\,dx} \) ta được:
- Diện tích hình phẳng giới hạn bởi \(y = \left( {e + 1} \right)x\,,\,\,y = \left( {{e^x} + 1} \right)x\) là:
- Xét f(x) là một hàm số liên tục trê đoạn [a ; b], ( với a < b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a ; b]. Mệnh đề nào dưới đây đúng ?
- Cho \(f(x) = \dfrac{{4m}}{\pi } + {\sin ^2}x\). Tìmmđể nguyên hàm F(x) của hàm số f(x) thỏa mãn F(0) = 1 và \(F\left( {\dfrac{\pi }{4}} \right) = \dfrac{\pi }{8}\).
- Xét hàm số F(x) là một nguyên hàm của hàm số f(x) trên [a ; b]. Khẳng định nào sau đây luôn đúng ?
- Trong không gian tọa độ \(Oxyz\) cho ba điểm \(M\left( {1;1;1} \right),\,N\left( {2;3;4} \right),\,P\left( {7;7;5} \right)\). Để tứ giác \(MNPQ\) là hình bình hành thì tọa độ điểm \(Q\) là
- Cho 3 điểm \(A(1;1;1),B(1; - 1;0),C(0; - 2;3)\). Tam giác \(ABC\) là
- Trong không gian tọa độ \(Oxyz\)cho ba điểm \(A\left( { - 1;2;2} \right),\,B\left( {0;1;3} \right),\,C\left( { - 3;4;0} \right)\). Để tứ giác \(ABCD\) là hình bình hành thì tọa độ điểm \(D\) là
- Cho điểm \(M\left( {1;2; - 3} \right)\), khoảng cách từ điểm \(M\)đến mặt phẳng \(\left( {Oxy} \right)\) bằng
- Cho điểm \(M\left( { - 2;5;0} \right)\), hình chiếu vuông góc của điểm \(M\) trên trục \(Oy\) là điểm
- Cho điểm \(M\left( {1;2; - 3} \right)\), hình chiếu vuông góc của điểm \(M\)trên mặt phẳng \(\left( {Oxy} \right)\)là điểm
- Cho điểm là (Mleft( {1;2; - 3} ight)), hình chiếu vuông góc của điểm (M)trên mặt phẳng (left( {Oxy} ight)) là điểm
- Cho điểm \(M\left( { - 2;5;1} \right)\), khoảng cách từ điểm \(M\) đến trục \(Ox\) bằng
- Cho hình chóp tam giác \(S.ABC\) với \(I\) là trọng tâm của đáy \(ABC\). Đẳng thức nào sau đây là đẳng thức đúng
- Trong không gian \(Oxyz\), cho 3 vectơ \(\mathop a\limits^ \to = \left( { - 1;1;0} \right)\); \(\mathop b\limits^ \to = \left( {1;1;0} \right)\); \(\mathop c\limits^ \to = \left( {1;1;1} \right)\). Trong các mệnh đề sau, mệnh đề nào sai:
- Cho vectơ \(\overrightarrow a = \left( {1; - 1;2} \right)\), độ dài vectơ \(\overrightarrow a \) là
- Trong không gian \(Oxyz\), cho điểm \(M\) nằm trên trục \(Ox\) sao cho \(M\) không trùng với gốc tọa độ, khi đó tọa độ điểm \(M\)có dạng
- Véc tơ đơn vị trên trục \(Oy\) là:
- mệnh đề đúng là
- nhận xét đúng là
- mệnh đề sai là
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 5
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 4
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 1 - Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 3 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG Tiếng Anh
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Tây Tiến
Quá trình văn học và phong cách văn học
Ai đã đặt tên cho dòng sông
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Hàm Số Fx Bằng E Mũ X Mũ 3 Là Một Nguyên Hàm Của Hàm Số
-
Hàm Số F(x) = E^(x^3) Là Một Nguyên Hàm Của Hàm Số F(x) = E^(x^3)
-
Hàm Số F(x) = E^(x^3) Là Một Nguyên Hàm Của Hàm Số F(x) = E^(x^3)
-
Tìm Nguyên Hàm E^(x^3) | Mathway
-
Hàm Số F( X ) = E^x^2 Là Nguyên Hàm Của Hàm Số Nào Trong Các Hàm ...
-
Biết \(F(x) = {x^3}\) Là Một Nguyên Hàm Của Hàm Số F(x) Trên . Giá Trị ...
-
Cho Fx Là Một Nguyên Hàm Của Hàm Số Fx=ex3 Và F0=2 . Hãy Tính F ...
-
Biết Fx Bằng X Mũ 3 Là Một Nguyên Hàm Của Hàm Số Fx Trên R
-
Cho F(x) = (x-1)e^x Là Một Nguyên Hàm Của Hàm Số F(x)e^2x...
-
Biết F(x) Là Một Nguyên Hàm Của Hàm Số F(x) = E^(-2x + 3) - Lazi
-
Biết F(x) Là Một Nguyên Hàm Của Hàm Số F(x)=e^2x Và F(0)=0. Giá Trị ...
-
Biết Rằng F(x) Là Một Nguyên Hàm Trên R Của Hàm Số F(x)=2017x/(x^2 ...
-
Nguyên Hàm Của Hàm Số F(x) = 2 Mũ X Là
-
Bảng Nguyên Hàm Các Hàm Số Thường Gặp (Đầy Đủ) - MathVn.Com
-
Hàm Số F(x)=ex2 Là Một Nguyên Hàm Của Hàm Số Nào Sau đây?