Tìm Số điểm Cực Trị Của Hàm Số Y = Sin X - Cos ^2x Trên [ 0;2pi ]

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Tìm số điểm cực trị của hàm số y = sin x - cos ^2x trên [ 0;2pi ] Tìm số điểm cực trị của hàm số y = sin x - cos ^2x trên [ 0;2pi ]

Câu hỏi

Nhận biết

Tìm số điểm cực trị của hàm số \(y = \sin x - {\cos ^2}x\) trên \(\left[ {0;2\pi } \right]\)

A. \(4\) B. \(1\) C. \(2\) D. \(3\)

Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

TXĐ : \(D = \mathbb{R}\)

Ta có \(y = \sin x - {\cos ^2}x\)

Suy ra \(y' = \cos x + 2\sin x\cos = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\sin x = - \dfrac{1}{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{2} + k\pi \\x = - \dfrac{\pi }{6} + k2\pi \\x = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\)

Mà \(x \in \left[ {0;2\pi } \right] \Rightarrow x = \dfrac{\pi }{2};x = \dfrac{{3\pi }}{2};x = \dfrac{{7\pi }}{6};x = \dfrac{{11\pi }}{6}\)

Có \(y' = \cos x + \sin 2x \Rightarrow y'' = - \sin x + 2\cos 2x\).

\(y''\left( {\dfrac{\pi }{2}} \right) = - 1 + 2\cos \pi = - 3 < 0\) nên \(x = \dfrac{\pi }{2}\) là điểm CĐ.

\(y''\left( {\dfrac{{3\pi }}{2}} \right) = - \sin \dfrac{{3\pi }}{2} + 2\cos 3\pi = 1 - 2 = - 1 < 0\) nên \(x = \dfrac{{3\pi }}{2}\) là điểm CĐ.

\(y''\left( {\dfrac{{7\pi }}{6}} \right) = - \sin \dfrac{{7\pi }}{6} + 2\cos \dfrac{{7\pi }}{3} = \dfrac{1}{2} + 1 = \dfrac{3}{2} > 0\) nên \(x = \dfrac{{7\pi }}{6}\) là điểm CT.

\(y''\left( {\dfrac{{11\pi }}{6}} \right) = - \sin \dfrac{{11\pi }}{6} + 2\cos \dfrac{{11\pi }}{3} = \dfrac{1}{2} + 1 = \dfrac{3}{2} > 0\) nên \(x = \dfrac{{11\pi }}{6}\) là điểm CT.

Vậy hàm số đã cho có \(4\) điểm cực trị.

Chọn A.

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Hàm Số Y=cos^2x-cosx