Tìm Số Hoán Vị Của N Phần Tử(n>2)trong đó Có 2 Phần Tử Cho Trước ...

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Thư viện số
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

OLM App phiên bản mới, cập nhật trải nghiệm ngay!

🔥ĐẤU TRƯỜNG TRỞ LẠI, THỬ THÁCH TĂNG CẤP!!! THAM GIA NGAY

Chính thức mở đề thi thử tốt nghiệp THPT trên máy tính từ 27/12/2025, xem ngay.

OLM Class tuyển sinh lớp bứt phá học kỳ II! Đăng ký ngay

  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
KN Khải Nhi 2 tháng 5 2016 - olm

Tìm số hoán vị của n phần tử(n>2)trong đó có 2 phần tử cho trước không đứng cạnh nhau.

Đây là trong quyển Ôn thi HSG casio nên chẳng biết lớp mấy...vì mình lớp 7 nên lấy đại nha

#Hỏi cộng đồng OLM #Toán lớp 7 8 SH Siêu Hacker 2 tháng 5 2016

Trước hết, ta có số hoán vị của nn phần tử là :Pn=n!Pn=n!Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :n!−2(n−1)!=(n−2)(n−1)!.

Đúng(0) VD Võ Đông Anh Tuấn 2 tháng 5 2016

Sao khó quá

Đúng(0) PH Phạm Hương Giang 2 tháng 5 2016

Trước hết, ta có số hoán vị của nn phần tử là :Pn=n!Pn=n!Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :n!−2(n−1)!=(n−2)(n−1)!.

Đúng(0) VD Võ Đông Anh Tuấn 2 tháng 5 2016

Trước hết, ta có số hoán vị của nn phần tử là :Pn=n!Pn=n!Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :n!−2(n−1)!=(n−2)(n−1)!.

Đúng(0) PH Phạm Hương Giang 2 tháng 5 2016

Trước hết, ta có số hoán vị của nn phần tử là :Pn=n!Pn=n!Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :n!−2(n−1)!=(n−2)(n−1)!.

Đúng(0) LD l҉o҉n҉g҉ d҉z҉ 2 tháng 5 2016

Trước hết, ta có số hoán vị của nn phần tử là :Pn=n!Pn=n!Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :n!−2(n−1)!=(n−2)(n−1)!.

Đúng(0) VN Vương Nguyên 2 tháng 5 2016

Trước hết, ta có số hoán vị của nn phần tử là :Pn=n!Pn=n!Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :n!−2(n−1)!=(n−2)(n−1)!.

Đúng(0) TD Tứ Diệp Thảo 2 tháng 5 2016

nobita kun giỏi quá

Đúng(0) Xem thêm câu trả lời Các câu hỏi dưới đây có thể giống với câu hỏi trên NA Nguyễn Anh Dũng 9 tháng 5 2021 - olm

Cho điểm K nằm trong tam giác ABC.Khi kéo dài BK thì có cắt AC không?Vì sao?           (sorry mn nha vì mình không biết đây là bài lớp mấy nên mọi người có cách nào dù ở lớp khác thì chỉ mình nha ^^ thanks!)

#Hỏi cộng đồng OLM #Toán lớp 7 2 PH Phùng Hoàng Anh 9 tháng 5 2021 Bô đeo biet Đúng(0) BM BMG ☠️🖕🏻 Muzan🖕🏻❤️?((*•.¸♡ţęąɱ ƒŗęę... 9 tháng 5 2021

Ko ,chắc vậy có hay ko mk ko bk xin đưng chửi

Đúng(0) Xem thêm câu trả lời KP Kênh Phim Hoạt Hình 27 tháng 11 2016 - olm

Mình lớp 7, mình thi violympic toán lớp 7 mà như đang thi volympic toán lớp 8 vậy ak.

Nếu lớp 7 thì không cần phải tính giá trị nhỏ nhất hay giá trị lớn nhất rồi

:(

Nên mình đang ôn toán lớp 8 nên có gì mình không biết thì các  bạn giúp mình nha!

#Hỏi cộng đồng OLM #Toán lớp 7 5 KT KIM TAEHYUNG 16 tháng 9 2018

mình thi toán volympic lớp 4 , mình hok lớp 4 

k nha 

Đúng(1) TD Tao Đẳng Cấp 20 tháng 3 2020

Mình cũng thế nè

Đúng(0) Xem thêm câu trả lời TT Tran Thi Hai Lam 15 tháng 4 2019 - olm

       Lâu rồi không có thời gian lên hỏi bài vì dạo này bận ôn thi hsg quá!! Các bạn cho mk hỏi câu này với vì thầy cho bài khó quá nên không làm được. Hihi...

Tìm số tự nhiên n thỏa mãn điều kiện:

\(2\times2^2+3\times2^3+4\times2^4+...+\left(n-1\right)\times2^{n-1}+n\times2^n=2^{n+34}\)

(Giúp mk với nhé!!)

#Hỏi cộng đồng OLM #Toán lớp 7 1 TO Tú Oanh 15 tháng 4 2019

bạ̣̣̣̣n vao cau hoi tuong tu hoac len google

Đúng(0) TH Thanh Hằng Trần 31 tháng 3 2018 - olm

bài này nằm trong đề ôn môn toán nên mình không biết lớp mấy

tại sao các cột điện lại thẳng hàng?

 

#Hỏi cộng đồng OLM #Toán lớp 7 2 DK Đoàn Khánh Linh 31 tháng 3 2018

Vì các chú thợ điện đặt nó như vậy...^-^

Đúng(0) TY Thiên Yết 31 tháng 3 2018

do la mon vat ly lp  do nhe 

Đúng(0) Xem thêm câu trả lời H huyhaipoko 10 tháng 12 2017 - olm

Bài 1: Số a được chia thành 3 phần theo tỷ lệ 3/5, 2/4, 3/ 6. Biết tổng bình phuương của 3 số đó 24009. Tìm số đó

Bài 3:

Nhà trường dự định khi bỏ cho ba lớp 7A ,7B ,7C theo tỉ lệ 7,6,5. Nhưng sau đó có học sinh tuyên chuyển cho 3 lớp nên phải chia lại theo tỉ lệ 6,5,4. Như vậy có lớp đã nhận ít hơn theo dự định 12 quyển vở. Tính số vở mỗi lớp nhận được

#Hỏi cộng đồng OLM #Toán lớp 7 1 NL Nguyễn Linh Chi 31 tháng 3 2020

3. Câu hỏi của manisana - Toán lớp 7 - Học toán với OnlineMath

Đúng(0) AC Amine cute 6 tháng 10 2016

Số phần tử x nguyên dương thỏa mãn | 2x - 7| bé hơn hoặc bằng 25 

Tại mình không viết kí hiệu đc nên mới thay bằng chữ nha, mấy bạn thông cảm

#Hỏi cộng đồng OLM #Toán lớp 7 3 KD Kẹo dẻo 6 tháng 10 2016

mk thi oy,vòng 3 đúng ko.Mình đc 900 điểm

Đúng(0) KD Kẹo dẻo 6 tháng 10 2016

mk coi trường bn oy,đứng đầu mà đc có 660 điểm.

Đúng(0) Xem thêm câu trả lời DP Dat Phamvu 8 tháng 12 2015 - olm

Bạn nào tốt bụng đánh hộ mình đề bài phần ôn tập chương 2 trong sách nâng cao và các chuyên đề đại số lớp 7. Có bao nhiêu bài mình sẽ cho bấy nhiêu like. Cảm ơn các bạn trước.

Lưu ý: Mỗi bài là một câu trả lời thì mình mới like được. Mong các bạn nhanh nhanh mình cần gấp hết tốt này là hết hạn ( 12/8/1015)

#Hỏi cộng đồng OLM #Toán lớp 7 0 NN nguyễn ngọc khánh vân 4 tháng 10 2016 - olm

Số phần tử x nguyên dương thỏa mãn | 2x - 7| bé hơn hoặc bằng 25 

Tại mình không viết kí hiệu đc nên mới thay bằng chữ nha, mấy bạn thông cảm

 

#Hỏi cộng đồng OLM #Toán lớp 7 0 DM Đám Mây nhỏ 18 tháng 3 2016 - olm

Đã có tỉnh của bạn nào thi HSG Toán lớp 7 chưa, nếu có thì gửi đề cho mình nhé ?? Mình đang cần ôn luyện để CN thi

#Hỏi cộng đồng OLM #Toán lớp 7 1 NV Nguyễn Văn Hiếu 18 tháng 3 2016

toán việt hay anh

Đúng(0) Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • B 🐊Bombardiro💣Crocodilo✈️ 7 GP
  • TD Trần Đình Bình 4 GP
  • DM ༒☬Đăng Minh☬༒ (Meokonhonguongthuoc) 4 GP
  • HG Happy great day GD ! 4 GP
  • NT Nguyễn Thanh Trúc 4 GP
  • NT Nguyễn Trường Tiến 4 GP
  • E ✦ ꧁𝓑é✿𝓬𝓱í𝓹꧂ ✦ 4 GP
  • NX ✿ngoann xinhh iuu~✿ VIP 2 GP
  • PN professor's name ThAnH 2 GP
  • HL Hoàng Linh Đan 2 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học trực tuyến OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Số Hoán Vị Của 12 Phần Tử Là