Tìm Tiệm Cận Ngang Của đồ Thị Hàm Số Bằng Máy Tính Casio

Đăng nhập Đăng nhập tài khoản Tài khoản mật khẩu của bạn Forgot your password? Get help Khôi phục mật khẩu Khởi tạo mật khẩu email của bạn Mật khẩu đã được gửi vào email của bạn. Thư Viện Học Liệu Trang chủ Tài Liệu Toán Toán 12 Tìm tiệm cận ngang của đồ thị hàm số bằng máy tính...

Thuvienhoclieu.Com xin giới thiệu đến các bạn phương pháp tìm tiệm cận ngang của đồ thị hàm số bằng máy tính casio giúp các bạn xác định được tiệm cận ngang của đồ thị có hàm số phức tạp. Các bạn hãy xem video nhé.

TRẮC NGHIỆM TÌM TIỆM CẬN ĐỨNG CỦA ĐỒ THỊ HÀM SỐ BẰNG MÁY TÍNH CASIO

  1. Phương Pháp:

Định nghĩa: Đường thẳng $y = {y_0}$ được gọi là tiệm cận ngang của đồ thị hàm số $y = f(x)$nếu thỏa một trong hai điều kiện sau:

  1. $\mathop {\lim }\limits_{x \to + \infty } f(x) = {y_0}$
  2. $\mathop {\lim }\limits_{x \to – \infty } f(x) = {y_0}$

Phương pháp:

Bước 2.

+ Tính $\mathop {\lim }\limits_{x \to  + \infty } f(x) = {y_0}$ bằng máy tính casio.  Nhập $f(x)$-> nhấn CALC -> chọn $x = {10^5}$.

+ Tính $\mathop {\lim }\limits_{x \to  – \infty } f(x) = {y_0}$ bằng máy tính casio.  Nhập $f(x)$-> nhấn CALC -> chọn $x =  – {10^5}$.

Kết quả có 4 dạng sau:

+ Một số dương rất lớn, suy ra giới hạn bằng $ + \infty \,$.

+ Một số âm rất nhỏ, suy ra giới hạn bằng $ – \infty \,$.

+ Một số có dạng ${\rm{A}}{.10^{ – n}}$, suy ra giới hạn bằng $0$.

+ Một số có dạng bình thường là B. Suy ra giới hạn bằng B hoặc gần bằng B.

  1. Các ví dụ:

Câu 1. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{4x – 3}}{{2x – 5}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{4x – 3}}{{2x – 5}} = 2$$ \Rightarrow y = 2$là tiệm cận ngang

+ Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{4x – 3}}{{2x – 5}} = 2$$ \Rightarrow y = 2$là tiệm cận ngang

Vậy đồ thị hàm số có 1 tiệm cận ngang là y = 2

Câu 2. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{4x – 3}}{{6 – 5x}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{4x – 3}}{{6 – 5x}} =  – \frac{4}{5}$$ \Rightarrow y =  – \frac{4}{5}$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{4x – 3}}{{6 – 5x}} =  – \frac{4}{5}$$ \Rightarrow y =  – \frac{4}{5}$ là tiệm cận ngang

Vậy đồ thị hàm số có 1 tiệm cận ngang là $y =  – \frac{4}{5}$

Câu 3. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{4{x^2} – 3}}{{1 + 5{x^3}}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{4{x^2} – 3}}{{1 + 5{x^3}}} = 0$$ \Rightarrow y = 0$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{4{x^2} – 3}}{{1 + 5{x^3}}} = 0$$ \Rightarrow y = 0$ là tiệm cận ngang

Vậy đồ thị hàm số có 1 tiệm cận ngang là $y = 0$

Câu 4. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{4{x^2} – 3}}{{1 + 5x}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{4{x^2} – 3}}{{1 + 5x}} =  + \infty $$ \Rightarrow $ Đồ thị không có tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{4{x^2} – 3}}{{1 + 5x}} =  – \infty $$ \Rightarrow $ Đồ thị không có tiệm cận ngang

Vậy đồ thị hàm số không có  tiệm cận ngang .

Câu 5. Tìm các tiệm cận ngang của đồ thị hàm số $y = x – \sqrt {{x^2} + x + 5} $

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \left( {x – \sqrt {{x^2} + x + 5} } \right) =  – \frac{1}{2}$$ \Rightarrow y =  – \frac{1}{2}$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \left( {x – \sqrt {{x^2} + x + 5} } \right) =  – \frac{1}{2}$$ \Rightarrow y =  – \frac{1}{2}$ là tiệm cận ngang

Vậy đồ thị hàm số có 1 tiệm cận ngang là $y =  – \frac{1}{2}$

Câu 6. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{2x – 3}}{{x + \sqrt {{x^2} + x – 5} }}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{2x – 3}}{{x + \sqrt {{x^2} + x – 5} }} = 1$$ \Rightarrow y = 1$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{2x – 3}}{{x + \sqrt {{x^2} + x – 5} }} =  + \infty $$ \Rightarrow $ trong trường hợp này không có tiệm cận ngang

Vậy đồ thị hàm số có 1 tiệm cận ngang là $y = 1$

Câu 7. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{2x – 7}}{{\sqrt {{x^2} + 1} }}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{2x – 7}}{{\sqrt {{x^2} + 1} }} = 2$$ \Rightarrow y = 2$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{2x – 7}}{{\sqrt {{x^2} + 1} }} =  – 2$$ \Rightarrow y =  – 2$ là tiệm cận ngang

Vậy đồ thị hàm số có hai tiệm cận ngang là $y = 2$ và $y =  – 2$

Câu 8. Tìm các tiệm cận ngang của đồ thị hàm số $y = \frac{{\left| {8{x^2} + 3x} \right|}}{{1 – 2x}}$

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{\left| {8{x^2} + 3x} \right|}}{{1 – 2{x^2}}} =  – 4$$ \Rightarrow y =  – 4$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{\left| {8{x^2} + 3x} \right|}}{{1 – 2{x^2}}} = 4$$ \Rightarrow y = 4$ là tiệm cận ngang

Vậy đồ thị hàm số có hai tiệm cận ngang là $y =  – 4$ và $y = 4$

Câu 9. Tìm số tiệm cận ngang của đồ thị hàm số $y = \frac{{x\sqrt {{x^2} + 1} }}{{\left| {{x^2} – 3} \right|}}$

  1. 0 B. 1 C. 2                      D. 3

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {{x^2} + 1} }}{{\left| {{x^2} – 3} \right|}} = 1$$ \Rightarrow y = 1$ là tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \frac{{x\sqrt {{x^2} + 1} }}{{\left| {{x^2} – 3} \right|}} =  – 1$$ \Rightarrow y =  – 1$ là tiệm cận ngang

Vậy đồ thị hàm số có hai tiệm cận ngang là $y =  – 1$ và $y = 1$

Vậy ta chọn phương án C

Câu 10. Tìm số tiệm cận ngang của đồ thị hàm số $y = 2x + \sqrt {4{x^2} + 1} $

  1. 0 B. 1 C. 2                      D. 3

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \left( {2x + \sqrt {4{x^2} + 1} } \right) =  + \infty $$ \Rightarrow $trong trường hợp này không có tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \left( {2x + \sqrt {4{x^2} + 1} } \right) = 0$$ \Rightarrow y =  – 1$ là tiệm cận ngang

Suy ra đồ thị hàm số có một tiệm cận ngang là $y = 0$

Vậy ta chọn phương án B.

Câu 11. Tìm số tiệm cận ngang của đồ thị hàm số $y = x – \sqrt {2{x^2} + 5} $

  1. 0 B. 1 C. 2                      D. 3

Giải:

+Tính $\mathop {\lim }\limits_{x \to  + \infty } \left( {x – \sqrt {2{x^2} + 5} } \right) =  – \infty $$ \Rightarrow $trong trường hợp này không có tiệm cận ngang

+Tính $\mathop {\lim }\limits_{x \to  – \infty } \left( {x – \sqrt {2{x^2} + 5} } \right) =  + \infty $$ \Rightarrow $trong trường hợp này không có tiệm cận ngang

Suy ra đồ thị hàm số không có cận ngang

Vậy ta chọn phương án A

BÀI VIẾT LIÊN QUANXEM THÊM

100 Đề Kiểm Tra Cuối Học Kỳ 1 Toán 12 Năm 2025-2026

Đề Kiểm Tra Kỳ 1 Toán 12 THPT Lê Trọng Tấn TP HCM 2025-2026 Có Đáp Án

Toán 11

Đề Kiểm Tra Kỳ 1 Toán 11 THPT Lê Trọng Tấn TP HCM 2025-2026 Có Đáp Án

Toán 10

Đề Kiểm Tra Kỳ 1 Toán 10 THPT Lê Trọng Tấn TP HCM 2025-2026 Có Đáp Án

Toán 10

Đề Kiểm Tra Kỳ 1 Toán 10 THPT Nguyễn Thái Bình Đà Nẵng 2025-2026 Có Đáp Án

Toán 12

Đề Thi Chọn HSG Toán 12 THPT Đồ Sơn Hải Phòng 2025-2026 Có Đáp Án

Toán 12

Đề Kiểm Tra Kỳ 1 Toán 12 THPT Nguyễn Thái Bình Đà Nẵng 2025-2026 Có Đáp Án

BÌNH LUẬN Hủy trả lời

Vui lòng nhập bình luận của bạn! Vui lòng nhập tên của bạn tại đây Bạn đã nhập địa chỉ email không chính xác! Vui lòng nhập địa chỉ email của bạn tại đây

Lưu tên và email của tôi trên trình duyệt này cho lần bình luận sau.

XEM NHIỀU

Đề Kiểm Tra Kỳ 1 Kinh Tế Và Pháp Luật 12...

08-01-2026

Đề Kiểm Tra Kỳ 1 Kinh Tế Và Pháp Luật 11...

08-01-2026

Đề Kiểm Tra Kỳ 1 Kinh Tế Và Pháp Luật 10...

08-01-2026

Đề Kiểm Tra Kỳ 1 Lịch Sử 12 THPT Lê Trọng...

08-01-2026 Xem thêm

BÀI VIẾT TIÊU BIỂU

Đề Kiểm Tra Kỳ 1 Kinh Tế Và Pháp Luật 12...

08-01-2026

Đề Kiểm Tra Kỳ 1 Kinh Tế Và Pháp Luật 11...

08-01-2026

Đề Kiểm Tra Kỳ 1 Kinh Tế Và Pháp Luật 10...

08-01-2026

BÀI VIẾT PHỔ BIẾN

Tổng Hợp 12 Đề Thi Học Sinh Giỏi Toán Lớp 7...

07-06-2022

Đề Minh Họa Vật Lí 2020 Lần 2 Có Đáp Án...

12-05-2020

Đề Minh Họa Hóa 2020 Lần 2 Có Đáp Án Và...

11-05-2020

MỤC XEM NHIỀU

  • Trắc Nghiệm Online243
  • Tài Liệu Công Dân710
  • Tài Liệu Địa Lí1063
  • Tài Liệu Lịch Sử1001
  • Tài Liệu Sinh Học717
  • Tài Liệu Ngữ Văn1320
  • Tài Liệu Tiếng Anh1672
  • Tài Liệu Hóa Học1035
  • Tài Liệu Vật lí1256
VỀ CHÚNG TÔIThuvienhoclieu.Com là trang upload và download tài liệu học tập, giảng dạy miễn phí có chất lượng cao ở cấp THPT và THCS.Liên hệ chúng tôi: [email protected] Copyright 2017-2025 THUVIENHOCLIEU.COM, All rights reserved

Từ khóa » Cách Tìm Tcn Bằng Máy Tính