Tìm X, Y, Z Thoả Mãn đẳng Thức X+y+z +8=2√(x-1) +4√(y-2) +6 ... - Olm
Có thể bạn quan tâm
- Học bài
- Hỏi bài
- Kiểm tra
- ĐGNL
- Thi đấu
- Thư viện số
- Bài viết Cuộc thi Tin tức Blog học tập
- Trợ giúp
- Về OLM
(Từ ngày 12/12) Lớp live ôn thi cuối kỳ I hoàn toàn miễn phí - Tham gia ngay!!!
Mở bộ đề mới - nhận quà VIP liền tay
- Mẫu giáo
- Lớp 1
- Lớp 2
- Lớp 3
- Lớp 4
- Lớp 5
- Lớp 6
- Lớp 7
- Lớp 8
- Lớp 9
- Lớp 10
- Lớp 11
- Lớp 12
- ĐH - CĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác nhận câu hỏi phù hợpChọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
- Tất cả
- Mới nhất
- Câu hỏi hay
- Chưa trả lời
- Câu hỏi vip
Tìm x, y, z thoả mãn đẳng thức
x+y+z +8=2√(x-1) +4√(y-2) +6√(z-3)
Mn giúp mình với , mình cần gấp lắm
#Hỏi cộng đồng OLM #Toán lớp 9 1
HL Hoàng Lê Bảo Ngọc 5 tháng 7 2016 \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\) (ĐKXĐ : \(x\ge1;y\ge2;z\ge3\))
\(\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
Vì \(\left(\sqrt{x-1}-1\right)^2\ge0;\left(\sqrt{y-2}-2\right)^2\ge0;\left(\sqrt{z-3}-3\right)^2\ge0\)
nên phương trình tương đương với : \(\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-3}-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)(TMĐK)
Vậy nghiệm của phương trình : \(\left(x;y;z\right)=\left(2;6;12\right)\)
Đúng(0) Các câu hỏi dưới đây có thể giống với câu hỏi trên NN ♡ Nàng ngốc ♡ 11 tháng 6 2019 - olmTìm các số x , y , z thỏa mãn đẳng thức :
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
#Hỏi cộng đồng OLM #Toán lớp 9 3
PT Phạm Thị Thùy Linh 11 tháng 6 2019 \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Rightarrow\left(x-1\right)-2\sqrt{x-1}+1\)\(+\left(y-2\right)-4\sqrt{y-2}+4\)\(+\left(z-3\right)-6\sqrt{z-3}+9\)\(=0\)
\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)
Đúng(0) TT Thanh Tùng DZ 11 tháng 6 2019\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-2\sqrt{y-2}.2+4\right)+\left(z-3-2\sqrt{z-3}.3+9\right)=0\)
\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)( 1 )
Mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(\sqrt{x-1}-1\right)^2=\left(\sqrt{y-2}-2\right)^2=\left(\sqrt{z-3}-3\right)^2=0\)
từ đó tìm được : \(x=2;y=6;z=12\)
Đúng(0) Xem thêm câu trả lời ND Nguyễn Đức An 12 tháng 7 2021 - olmTìm các số thực x, y, z thỏa mãn đẳng thức
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
#Hỏi cộng đồng OLM #Toán lớp 9 3
YS Yuri Sweet[𝕿𝖊𝖆𝖒 𝕹𝖊𝖕𝖆𝖑] 12 tháng 7 2021 \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
Đúng(0) DD Đoàn Đức Hà Giáo viên 12 tháng 7 2021ĐK: \(x\ge1,y\ge2,z\ge3\).
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)(thỏa mãn)
Đúng(0) Xem thêm câu trả lời VQ Võ Quang Huy 24 tháng 7 2019 - olmCho x, y, z là các sư dương thoả mãn đẳng thức x+y+z=2004. Tìm giá trị lớn nhất của biểu thức : P=x/x+1 + y/y+1 +z/z+1
Giúp lẹ với ACE, chiều thầy kiểm tra
#Hỏi cộng đồng OLM #Toán lớp 9 4
LD Lê Đức Quyết 24 tháng 7 2019 hehe chiều mình cũng thế
Đúng(0) LD Lê Đức Quyết 24 tháng 7 2019https://diendantoanhoc.net/topic/74052-cho-xyz0-xyz1-tim-gtnn-c%E1%BB%A7a-p-fracx2yzyzfracy2zxzxfracz2xyxy/
vào là có ok
Đúng(0) Xem thêm câu trả lời NV Nguyễn Việt Hoàng 5 tháng 8 2020 - olm\(\frac{16}{\sqrt{x-6}}+\frac{4}{\sqrt{y-2}}+ \frac{256}{\sqrt{z-1750}} +\sqrt{x-6}+\sqrt{y-2}+\sqrt{z-1750}=44\)
Tìm 3 số x,y,z thoả mãn điều kiện
Mn ưi . Giúp mk với . Xin hậu ta ^_^
#Hỏi cộng đồng OLM #Toán lớp 9 3
PN Phan Nghĩa 5 tháng 8 2020 Áp dụng bđt AM-GM ta có :
\(\frac{16}{\sqrt{x-6}}+\sqrt{x-6}\ge2\sqrt{16}=8\)
\(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}\ge2\sqrt{4}=4\)
\(\frac{256}{\sqrt{z-1750}}+\sqrt{z-1750}\ge2\sqrt{256}=32\)
Cộng theo vế ta được \(LHS\ge4+8+32=44\)
Dấu = xảy ra khi và chỉ khi ...
anh tự xét dấu = đi
Đúng(0) NV Nguyễn Việt Hoàng 5 tháng 8 2020dcv_new Mơn nhìu nha ^_^
Đúng(0) Xem thêm câu trả lời AT Ánh trăng cô đơn 19 tháng 9 2016 - olmcho x,y,z>0 tm xyz=1
CM \(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}>=\frac{3}{2}\)
các bn giải giúp mình với mình cần gấp lắm mình tick cho
#Hỏi cộng đồng OLM #Toán lớp 9 1
HV Hoàng Văn Thái 19 tháng 9 2016 áp dụngBĐT cô si ta có
\(\frac{x^2}{y+1}\)+\(\frac{y+1}{4}\)\(\ge\)x
\(\frac{y^2}{z+1}\)+\(\frac{z+1}{4}\)\(\ge\)y
\(\frac{z^2}{x+1}\)+\(\frac{x+1}{4}\)\(\ge\)z
khi đó VT\(\ge\)x+y+z-\(\frac{x+y+z+3}{4}\)=\(\frac{3\left(x+y+z\right)-3}{4}\)
áp dụng BĐT cô si
x+y+z\(\ge\)\(3\sqrt[3]{xyz}\)=3
do đó VT\(\ge\)\(\frac{6}{4}\)=\(\frac{3}{2}\) (đpcm)
Đúng(0) NT Nguyễn Thảo 30 tháng 4 2018 - olmCho x>0 y>0 z>0 thoả Mãn xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức Q= (3x+3y+2z)/[√6(x^2+5) + √6(y^2 +5) + √(z^2+5) ]
Hiện tại mik dang cần gấp. Mong mọi người giúp mình nh🙏🙏🙏🙏💓💓💓💓💓
#Hỏi cộng đồng OLM #Toán lớp 9 1
NH Nắng Hạ 30 tháng 4 2018 \(Q=\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)
\(\Leftrightarrow Q=\frac{3x+3y+2z}{\sqrt{6\left(x^2+xy+yz+zx\right)}+\sqrt{6\left(y^2+xy+yz+zx\right)}+\sqrt{z^2+xy+yz+zx}}\)
\(\Leftrightarrow Q=\frac{3x+3y+2z}{\sqrt{3\left(x+y\right).2\left(x+z\right)}+\sqrt{3\left(y+x\right).2\left(y+z\right)}+\sqrt{\left(z+x\right).\left(z+y\right)}}\)
\(\Rightarrow Q\ge\frac{3x+3y+2z}{\frac{3\left(x+y\right)+2\left(x+z\right)}{2}+\frac{3\left(y+x\right)+2\left(y+z\right)}{2}+\frac{\left(z+x\right)+\left(z+y\right)}{2}}\)
\(\Rightarrow Q\ge\frac{3x+3y+2z}{\frac{9x+9y+6z}{2}}=\frac{2}{3}\)
Dấu "=" xảy ra khi \(x=y=1\)và \(z=2\)
Đúng(0) ST Song tử 11 tháng 9 2019 - olm1, tìm các số nguyên dương x,y,z thỏa mãn 8x+9y+10z=100 và x+y+z>11
2,tìm x là số nguyên lớn nhất thỏa mãn x< ( √5 +2)^8
3, tìm các số tự nhiên x,y,z thỏa mãn đồng thời (x-1) ³ +y ³ -2z ³ =0 và x+y+x=1
đg cần gấp lắm , help me!!
#Hỏi cộng đồng OLM #Toán lớp 9 0
HA Hà Annh 8 tháng 7 2018 Cho 3 số dương x,y,z thoả mãn điều kiện : xy+yz+zx=1. Tính:
\(A=x\sqrt{\dfrac{\left(y^2+1\right)\left(z^2+1\right)}{x^2+1}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Mn giúp e vs an, e đang cần gấp, cảm ơn mn nhiều lắm lắm
#Hỏi cộng đồng OLM #Toán lớp 9 1
AH Akai Haruma Giáo viên 8 tháng 7 2018 Lời giải:
Ta có: \(xy+yz+xz=1\)
\(\Rightarrow \left\{\begin{matrix} x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\\ y^2+1=y^2+xy+yz+xz=(y+z)(y+x)\\ z^2+1=z^2+xy+yz+xz=(z+x)(z+y)\end{matrix}\right.\)
Do đó:
\(\sqrt{\frac{(y^2+1)(z^2+1)}{x^2+1}}=\sqrt{\frac{(y+z)(y+x)(z+x)(z+y)}{(x+y)(x+z)}}=\sqrt{(y+z)^2}=y+z\)
\(\Rightarrow x\sqrt{\frac{(y^2+1)(z^2+1)}{x^2+1}}=x(y+z)\)
Hoàn toàn tt:
\(y\sqrt{\frac{(z^2+1)(x^2+1)}{y^2+1}}=y(x+z)\); \(z\sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=z(x+y)\)
Do đó:
\(A=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)
Đúng(0) BX Bloom xinh đẹp 31 tháng 5 2020 - olmCho x+y+z=1
x^2+y^2+z^2=2
x^3+y^3+z^3=3
Tính x^5+y^5+z^5
Giúp mình với nhé mình đang cần gấp!!!
#Hỏi cộng đồng OLM #Toán lớp 9 0
Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên - Tuần
- Tháng
- Năm
- KV Kiều Vũ Linh 2 GP
- E ✦𝘉é✿𝘤𝘩í𝘱✦ 2 GP
- E ElmSunn 2 GP
- NT Nguyễn Trọng Đạt VIP 2 GP
- -❇️🆗𝕰𝔛𝕻𝔈𝕽ℑ𝕰𝔑𝕮𝔈𝕯✳️𝕻𝔈𝕺𝔓𝕷𝔈🆒❎- 2 GP
- D Đ𝙖̆𝙣𝙜 𝙈𝙞𝙣𝙝 (𝙈𝙚𝙤𝙠𝙤𝙣𝙝𝙤𝙣𝙜𝙪𝙤𝙣𝙜𝙩𝙝𝙪𝙤𝙘) 2 GP
- NV ✫⊰ Ngô Vũ ༒ Công Vinh ⊱✫ VIP 2 GP
- NT Nguyễn Thanh Trúc 2 GP
- LD Lê Duy Anh 2 GP
- NB Nguyễn Bá Hiếu 2 GP
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng ĐóngYêu cầu VIP
Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.
Từ khóa » Tìm X Thỏa Mãn đẳng Thức
-
Tìm X Thỏa Mãn đẳng Thức - Lý Thuyết - Toán Lớp 7 - YouTube
-
Tìm X Thỏa Mãn đẳng Thức - Cô Vương Thị Hạnh (DỄ HIỂU NHẤT)
-
Tìm X Thỏa Mãn đẳng Thức : - 6 X 3 - Pitago.Vn
-
Tìm Giá Trị Của X để Biểu Thức Có Giá Trị Thỏa Mãn đẳng Thức, Bất đẳng ...
-
Tìm X Thỏa Mãn đẳng Thức Cho Trước - Toán Học Lớp 9 - Lazi
-
Dùng Máy Tính Bỏ Túi Tìm X Thỏa Mãn đẳng Thức
-
Tìm Giá Trị Của X Thỏa Mãn đẳng Thức Chứa Dấu Giá Trị Tuyệt đối ...
-
Dạng 11. Tìm X Thỏa Mãn đẳng Thức Cho Trước - Tài Liệu Text - 123doc
-
Tìm X Thỏa Mãn đẳng Thức - Selfomy Hỏi Đáp
-
Tìm X Thoả Mãn đẳng Thức X^2=5 - Bo Bo - Hoc247
-
Dùng Máy Tính Bỏ Túi Tìm X Thỏa Mãn đẳng
-
Tìm Giá Trị Của X Thỏa Mãn đẳng Thức: - Hoc247
-
Tìm X Thỏa Mãn đẳng Thức Cho Trước Phương Pháp