Tính A = 1.2 + 2.3 + 3.4 + … + N.(n + 1) - Olm

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM
Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Cập nhật Hủy Cập nhật Hủy
  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Tạo câu hỏi Hủy Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
NH nguyễn huy bảo 23 tháng 6 2015 - olm

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

#Toán lớp 7 4 MT Minh Triều 23 tháng 6 2015

ta thấy mỗi hạng tử của tổng trên là tích của hai số tự nhiên liên tiếp , khi đó:

gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2

a2=2.3=>3a2=2.3.3=>3a2=2.3.4-1.2.3

a3=3.4=>3a3=3.3.4=>3a3=3.4.5-2.3.4

.......

an-1=(n-1)n=>3an-1=3(n-1)n=>3an-1=(n-1)n(n+1)-(n-2)(n-1)n

an=n(n+1)=>3an=3n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)

cộng các vế đẳng thức trên ta có:

3a1+3a2+...+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+...+(n-1)n(n+1)-(n-2)(n-1)n+n(n+1)(n+2)-(n-1)n(n+1)

=>3(a1+a2+...+an-1+an)=n(n+1)(n+2)

mà A=a1+a2+...+an-1+an nên

A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Đúng(0) SN ✓ ℍɠŞ_ŦƦùM $₦G ✓ 23 tháng 6 2015

\(A=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.4+3.4.3+...+3n\left(n+1\right)\)

\(=1.2.3+2.3.\left(4-1\right)+3.4\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

vậy \(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Đúng(0) Xem thêm câu trả lời Các câu hỏi dưới đây có thể giống với câu hỏi trên DD Đỗ Đức Hà 22 tháng 11 2021

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

#Toán lớp 7 2 NK Nguyên Khôi 22 tháng 11 2021

Tham khảo:

https://olm.vn/hoi-dap/detail/7327860996.html

Đúng(0) TC Trên con đường thành công không có.... 22 tháng 11 2021

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+....+n\left(n+1\right).3\)

\(\Leftrightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(\Leftrightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(\Leftrightarrow3A=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

Đúng(4) Xem thêm câu trả lời BT BÍCH THẢO 30 tháng 9 2023

Bài 1: Tính A = 1.2 + 2.3 + 3.4 +...+n. (n+1)

#Toán lớp 7 2 T 👾thuii 30 tháng 9 2023 Bài 1: Tính A = 1.2 + 2.3 + 3.4 +...+n. (n+1)Giai:

=> Ta thấy rằng mỗi số hạng trong dãu số trên đều là tích của hai số tự nhiên liên tiếp, khi đó:

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2

Tương tự:

a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3

a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4 ....

a(n - 1) = (n - 1).n → 3a(n - 1) = 3(n - 1)n → 3a(n - 1) = (n - 1).n.(n + 1) - (n - 2).(n - 1).n

an = n.(n - 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng vế với vế của các đẳng thức trên ta được:

3(a1 + a2 + a3 +...+ an) = n(n + 1)(n + 2)

-> A = n.(n+1) .( n+2) / 3

Đúng(1) BT BÍCH THẢO 30 tháng 9 2023

Khó hỉu v 🫤

E ko hỉu

Đúng(1) Xem thêm câu trả lời DD đạt đẹp trai 21 tháng 12 2018 - olm

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

#Toán lớp 7 2 2 ༺༒༻²ᵏ⁸ 22 tháng 5 2021

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4…………………..an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)nan = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Đúng(0) 2 ༺༒༻²ᵏ⁸ 22 tháng 5 2021

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Đúng(0) Xem thêm câu trả lời NL Nguyễn Lê Bảo Ngọc 4 tháng 7 2016 - olm

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

#Toán lớp 7 0 22 ✟✟✟๖²⁴ʱŤʉấŋ ²к⁶༉✟✟✟ 7 tháng 2 2020 - olm

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

#Toán lớp 7 1 M ‿༂ℳïɛ‿༂➴•김태형⁀ᶦᵈᵒᶫ 7 tháng 2 2020

\giải

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2 a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3 a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4 ………………….. an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Đúng(0) TH TRAI HỌ CHU (PÉ LEO 2K5)‿✿ßin۶ßin✿‿... 23 tháng 8 2019 - olm

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

#Toán lớp 7 3 NC Nguyễn Công Tỉnh 23 tháng 8 2019

Tham khảo tại link này

Câu hỏi của nguyễn huy bảo - Toán lớp 7 - Học toán với OnlineMath

câu trả lời đã được OLM lựa chọn.

Đúng(0) XO Xyz OLM 23 tháng 8 2019

A = 1.2 + 2.3 + 3.4 + ... + n(n + 1)

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n + 1).3

=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n.(n + 1).[n + 2 - (n - 1)]

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n.(n + 1).(n + 2) - (n - 1).n.(n + 1)

=> 3A = n.(n + 1).(n + 2)

=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Vậy A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Đúng(0) Xem thêm câu trả lời LV Long Vũ 8 tháng 11 2015 - olm

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

#Toán lớp 7 1 NT Nguyễn Thị Thùy Dương 8 tháng 11 2015

3A= 3(1.2)+3.(2.3)+3(3.4)+.......+3( n(n+1))

=( 1.2.3- 0.1.2) +(2.3.4-1.2.3) +( 3.4.5 - 2.3.4)+...............+( n(n+1)(n+2) - (n-1)n(n+1))

= 1.2.3 -0.1.2 + 2.3.4-1.2.3 + 3.4.5 - 2.3.4 + ...............+ n(n+1)(n+2) - (n-1)n(n+1)

= n(n+1)(n+2)

=> A = n(n+1)(n+2)/3

Đúng(0) VD van duongthe 25 tháng 2 2018 - olm

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

#Toán lớp 7 1 NT Nguyễn Tiến Đức 25 tháng 2 2018

áp dụng tính chất => A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Đúng(0) PY Pé Yến Siêu Quậy 13 tháng 4 2016 - olm

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

#Toán lớp 7 1 NH Nguyễn Hưng Phát 13 tháng 4 2016

3A=1.2.3+2.3.(4-1)+.............+n.(n+1).[(n+2)-(n-1)]

3A=1.2.3+2.3.4-1.2.3+............+n.(n+1).(n+2)-(n-1).n.(n+1)

3A=n.(n+1).(n+2)

A=\(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Đúng(0) NS NGUYỄN SANH KIÊN 29 tháng 10 2017 - olm

Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

#Toán lớp 7 0 Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • DH Đỗ Hoàn VIP 60 GP
  • NT Nguyễn Tuấn Tú 41 GP
  • NG Nguyễn Gia Bảo 26 GP
  • 1 14456125 19 GP
  • VN vh ng 16 GP
  • TN Trương Nguyễn Anh Thư 12 GP
  • N ngannek 10 GP
  • H Hbth 8 GP
  • LN Lê Như Bảo Nam 6 GP
  • TT tran trong 4 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học toán với OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Tính Tổng S=1.2+2.3+...+n(n+1) Pascal