Tính đạo Hàm Của Hàm Số \(y = {3^{x + 1}}\) - HOC247
Có thể bạn quan tâm
- Câu hỏi:
Tính đạo hàm của hàm số \(y = {3^{x + 1}}\)
- A. \(y' = {3^{x + 1}}\ln 3\)
- B. \(y' = \left( {1 + x} \right){.3^x}\)
- C. \(y' = \frac{{{3^{x + 1}}}}{{\ln 3}}\)
- D. \(y' = \frac{{{3^{x + 1}}.\ln 3}}{{1 + x}}\)
Lời giải tham khảo:
Đáp án đúng: A
\(y' = \left( {{3^{x + 1}}} \right)' = {3^{x + 1}}\ln 3\)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 268145
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Nguyễn Đình Chiểu lần 2
50 câu hỏi | 90 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là
- Cho CSC \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=3\) và \({{u}_{2}}=9.\) Công sai của cấp số cộng đã cho bằng
- Cho hàm số \(f\left( x \right)\) có bảng biến thiên: Hàm số đã cho đồng biến trên khoảng:
- Thể tích của khối hình hộp chữ nhật có các cạnh lần lượt là a, 2a, 3a bằg
- Số cách chọn 2 học sinh từ 7 học sinh là
- Tính tích phân \(I = \int\limits_{ - 1}^0 {\left( {2x + 1} \right)dx} \)
- Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ bên. Giá trị cực tiểu của hàm số là số nào sau đây?
- Cho \(\int\limits_{0}^{1}{f\left( x \right)dx=3,\int\limits_{0}^{1}{g\left( x \right)dx=-2}}\). Tính giá trị của biểu thức \(I=\int\limits_{0}^{1}{\left[ 2f\left( x \right)-3g\left( x \right) \right]}dx\).
- Tính thể tích của khối nón có chiều cao bằg 4 và độ dài đường sinh bằng 5.
- Cho hai số phức \({{z}_{1}}=2-3i\) và \({{z}_{2}}=1-i\). Tính \(z={{z}_{1}}+{{z}_{2}}\).
- Nghiệm của phương trình \({2^{2x - 1}} = 8\) là
- Cho số phức z có điểm biểu diễn trong mặt phẳg tọa độ Oxy là điểm \(M\left( 3;-5 \right)\).
- Số phức nghịch đảo của số phức z=1+3i là
- Biết \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)=\frac{1}{x+1}\) và \(F\left( 0 \right)=2\) thì \(F\left( 1 \right)\) bằng.
- Cho số phức z thỏa mãn \(z\left( 1+i \right)=3-5i\). Tính môđun của z.
- Cho hàm số \(f\left( x \right)\) thỏa mãn \({f}'\left( x \right)=27+\cos x\) và \(f\left( 0 \right)=2019.\) Mệnh đề nào dưới đây đúng?
- Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 1;3;5 \right),\text{ }B\left( 2;0;1 \right),\text{ }C\left( 0;9;0 \right).\) Tìm trọng tâm G của tam giác ABC.
- Đồ thị hs \(y=-\frac{{{x}^{4}}}{2}+{{x}^{2}}+\frac{3}{2}\) cắt trục hoành tại mấy điểm?
- Xác định tọa độ điểm I là giao điểm của hai đường tiệm cận của đồ thị hàm số \(y=\frac{2x-3}{x+4}.\)
- Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên dưới?
- Với a và b là hai số thực dương tùy ý và \(a\ne 1,\text{ }{{\log }_{\sqrt{a}}}({{a}^{2}}b)\) bằng
- Một hình trụ có bk đáy r = 5cm, chiều cao h = 7cm. Diện tích xug quanh của hình trụ này là:
- Biết giá trị lớn nhất và giá trị nhỏ nhất của hs \(y=\frac{{{x}^{3}}}{3}+2{{x}^{2}}+3x-4\) trên \(\left[ -4;0 \right]\) l�
- Số nghiệm của phương trình \(\log {\left( {x - 1} \right)^2} = 2\)
- Viết biểu thức \(P=\sqrt[3]{x.\sqrt[4]{x}}\) (x>0) dưới dạng luỹ thừa với số mũ hữu tỷ.
- Trong khôg gian Oxyz, đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{z}{3}\) đi qua điểm nào dưới đây
- Trong không gian Oxyz, cho mặt cầu \((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-3=0\). Bán kính của mặt cầu bằng:
- Tính đạo hàm của hàm số \(y = {3^{x + 1}}\)
- Cho hs \(f\left( x \right)\) liên tục trên \(\mathbb{R}\), bảng xét dấu của \({f}\left( x \right)\) như sau:Hàm số có bao n
- Tập nghiệm S của bất phương trình \({5^{1 - 2{\rm{x}}}} > \frac{1}{{125}}\) là:
- Trong không gian tọa độ Oxyz, mặt phẳng chứa trục Oz và đi qua điểm \(I\left( 1;2;3 \right)\) có phương trình là
- Trong khôg gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( 1;2;2 \right), B\left( 3;-2;0 \right)\).
- Trong không gian \(Oxyz\), phương trình đường thẳng đi qua điểm \(A\left( 1;2;0 \right)\) và vuông góc với mặt phẳng \(\left( P \right):2x+y-3z-5=0\) là
- Trong không gian Oxyz, cho hai điểm \(A\left( 1;2;3 \right)\) và \(B\left( 3;2;1 \right)\). Phương trình mặt cầu đường kính AB là
- Hàm số nào sau đây đồng biến trên \(\mathbb{R}$?
- Cho hình chóp S.ABC có SA vuông góc với mặt phẳng \(\left( ABC \right),SA=2a,\) tam giác ABC vuông tại B, \(AB=a\sqrt{3}\) và BC=a (minh họa như hình vẽ bên). Góc giữa đường thẳng SC và mặt phẳng \(\left( ABC \right)\) bằng
- Cho tập hợp \(S=\left\{ 1;2;3;...;17 \right\}\) gồm 17 số nguyên dương đầu tiên. Chọn ngẫu nhiên một tập con có 3 phần tử của tập hợp S. Tính xác suất để tập hợp được chọn có tổng các phần tử chia hết cho 3.
- Hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A,AB=a,AC=2a. Hình chiếu vuông góc của A' lên mặt phẳng \(\left( ABC \right)\) là điểm I thuộc cạnh BC. Tính khoảng cách từ A tới mặt phẳng \(\left( A'BC \right)\).
- Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, AB = a, \(\angle BAD={{60}^{0}},SO\bot (ABCD)\) và mặt phẳng (SCD) tạo với đáy một góc \({{60}^{0}}\). Tính thế tích khối chóp S.ABCD
- Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\). Đồ thị của hàm số \(y={f}'\left( x \right)\) như hình vẽ. Giá trị lớn nhất của hàm số \(g\left( x \right)=f\left( 3x \right)+9x\) trên đoạn \(\left[ -\frac{1}{3};\frac{1}{3} \right]\) là
- Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 1 \right)=3\) và \(f\left( x \right)+x{f}'\left( x \right)=4x+1\) với mọi x>0. Tính \(f\left( 2 \right).\)
- Cho số phức z=a+bi \(\left( a,\,b\in \mathbb{R} \right)\) thỏa mãn \(\left| z-3 \right|=\left| z-1 \right|\) và \(\left( z+2 \right)\left( \overline{z}-i \right)\) là số thực. Tính a+b.
- Cho hàm số . Tính \(\int\limits_0^{{e^2} - 1} {\frac{{\ln \left( {x + 1} \right)}}{{x + 1}}dx} \)
- Trong hệ tọa độ Oxyz, cho điểm \(M\left( 1;-1;2 \right)\) và hai đường thẳng , \({{d}_{2}}:\frac{x+1}{2}=\frac{y-1}{1}=\frac{z+2}{1}\). Đường thẳng \(\Delta \) đi qua M và cắt cả hai đường thẳng \({{d}_{1}},{{d}_{2}}\) có véc tơ chỉ phương là \(\overrightarrow{{{u}_{\Delta }}}\left( 1;a;b \right)\), tính a+b
- Có bao nhiêu số nguyên dươg y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y
- Cho số phức \({{z}_{1}}, {{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=12\) & \(\left| {{z}_{2}}-3-4\text{i} \right|=5\).
- Có bao nhiêu cặp số nguyên \(\left( x,y \right)\) với \(1\le x\le 2020\) thỏa mãn \(x\left( {{2}^{y}}+y-1 \right)=2-{{\log }_{2}}{{x}^{x}}\)
- Cho đồ thị (C): \(y = {x^4} - 2{x^2}\). Khẳng định nào sau đây là sai ?
- Giá trị của tham sô m để phương trình \({x^3} - 3x = 2m + 1\) có ba nghiệm phân biệt là:
- Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Giải tích 12 Chương 3
Đề thi giữa HK1 môn Toán 12
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn bài Người lái đò sông Đà
Đề thi giữa HK1 môn Ngữ Văn 12
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 7 Lớp 12 Economic Reforms
Tiếng Anh 12 mới Review 1
Đề thi giữa HK1 môn Tiếng Anh 12
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Vật lý 12 Chương 3
Đề thi giữa HK1 môn Vật Lý 12
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Hoá Học 12 Chương 4
Đề thi giữa HK1 môn Hóa 12
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 5
Đề thi giữa HK1 môn Sinh 12
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Đề thi giữa HK1 môn Lịch Sử 12
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
Đề thi giữa HK1 môn Địa lý 12
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Đề thi giữa HK1 môn GDCD 12
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Đề thi giữa HK1 môn Công nghệ 12
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Đề thi giữa HK1 môn Tin học 12
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Toán
Quá trình văn học và phong cách văn học
Sóng- Xuân Quỳnh
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Tây Tiến
Ai đã đặt tên cho dòng sông
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » đạo Hàm Của Y = 3 Mũ X + 1
-
Tính đạo Hàm Của Hàm Số Y = 3^x + 1 - Khóa Học
-
[LỜI GIẢI] Tính đạo Hàm Của Hàm Số Y = 3^x + 1. - Tự Học 365
-
Tính đạo Hàm Của Hàm Số Y = 3^(x+1). Y'...
-
Tính đạo Hàm Của Hàm Số Y=3^1-x...
-
Tính đạo Hàm Của Hàm Số Y=(3-x)^1/3 Trên Tập...
-
Tìm Đạo Hàm - D/dx Y=(3x-1) | Mathway
-
Đạo Hàm Của Hàm Số Y = (3^x - 1)/5^x Là:
-
Đạo Hàm Của Hàm Số (y = ((5x - 1)^2) ) Là
-
Tính đạo Hàm Của Hàm Số Y=3^2x A. Y'=2x.3 ^2x-1... - Vietjack.online
-
Giải Toán 11 Bài 2. Quy Tắc Tính đạo Hàm - Giải Bài Tập
-
Top 13 đạo Hàm Của 3 Phần X
-
Tính đạo Hàm Của Hàm Số Y=3x+1
-
Tính đạo Hàm Của Hàm Số $y = {3^{6x + 1}}$.