Tính \(F\left( X \right) = \int {x\sin 2xdx.} \) Chọn Kết Quả đúng. - Hoc247
Có thể bạn quan tâm
- Câu hỏi:
Tính \(F\left( x \right) = \int {x\sin 2xdx.} \) Chọn kết quả đúng.
- A. \(F\left( x \right) = \frac{1}{4}\left( {2x\cos 2x + \sin 2x} \right) + C.\)
- B. \(F\left( x \right) = - \frac{1}{4}\left( {2x\cos 2x + \sin 2x} \right) + C.\)
- C. \(F\left( x \right) = - \frac{1}{4}\left( {2x\cos 2x - \sin 2x} \right) + C.\)
- D. \(F\left( x \right) = \frac{1}{4}\left( {2x\cos 2x - \sin 2x} \right) + C.\)
Lời giải tham khảo:
Đáp án đúng: C
.png)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 27943
Loại bài: Bài tập
Chủ đề : Đề thi Trung học phổ thông Quốc Gia
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi thử THPT QG 2018 môn Toán - THPT Yên Định 2 Thanh Hóa
50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Cho hàm số \(y = \lim \left( x \right)\) có \(\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = 1\) và \(\mathop {\lim }\limit
- Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Tính cosin của góc giữa một mặt bên và một mặt đáy.
- Trong không gian với hệ trục tọa độ Oxyz, cho \(A\left( {0; - 1;1} \right),B\left( { - 2;1; - 1} \right),C\left( { - 1;3;2} \right).
- Cho hàm số \(y = {x^3} - 3{x^2} - 9x + 5.\) Mệnh đề nào sau đây đúng?
- Ông A gửi tiết kiệm vào ngân hàng 300 triệu đồng, với loại kì hạn 3 tháng và lãi suất 12,8%/năm.
- Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC).
- Một đội gồm 5 nam và 8 nữ.
- Tính thể tích của khối trụ biết bán kính đáy của hình trụ đó bằng a và thiết diện đi qua trục là một hình vuông.
- Cho khối lăng trụ đứng ABC.ABC có BB = a, đáy ABC là tam giác vuông cân tại B và \(AC = a\sqrt 2 .
- Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB.
- Một trong các đồ thị ở hình vẽ là đồ thị của hàm số f(x) liên tục trên R thỏa mãn \(f\left( 0 \right) = 0,f\left(
- Cho hình nón có thiết diện qua trục của hình nón là tam giác vuông cân có cạnh góc vuông bằng \(a\sqrt {2.
- Cho tam giác ABC với trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, AC, AB của tam giác ABC.
- Trong mặt phẳng cho 10 điểm phân biệt \({A_1},{A_2},...
- Tập nghiệm của bất phương trình \({9^x} - {2.6^x} + {4^x} > 0\) là
- Nghiệm của phương trình \(\sin x - \sqrt 3 \cos x = 2\sin 3x\) là
- Tính \(F\left( x \right) = \int {x\sin 2xdx.} \) Chọn kết quả đúng.
- Có thể chia một khối lập phương thành bao nhiêu khối tứ diện có thể tích bằng nhau mà các đỉnh của tứ diện cũng l
- Một cấp số nhân có số hạng đầu \({u_1} = 3,\) công bội \(q = 2.\) Biết \({S_n} = 765.\) Tìm n.
- Đồ thị hình bên là của hàm số nào?
- Cho hàm số \(y = {x^4} - 4{x^2} - 2\) có đồ thị (C) và đồ thị \(\left( P \right):y = 1 - {x^2}.
- Giá trị nhỏ nhất của hàm số \(y = x + \frac{9}{x}\) trên đoạn \(\left[ {2;4} \right]\) là
- Tìm tập xác định của hàm số \(y = \sqrt { - 2{x^2} + 5x - 2} + \ln \frac{1}{{{x^2} - 1}}\) là
- Biết F(x) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{x - 1}}\) và \(F\left( 2 \right) = 1.\) Tính F(3)
- Cho chóp S.ABCD có đáy là hình vuông \(SA \bot \left( {ABCD} \right).
- Khai triển \({\left( {1 + 2x + 3{x^2}} \right)^{10}} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_{20}}{x^{20}}.
- Cho a,b >0 và \(a,b \ne 1,\) biểu thức \(P = {\log _{\sqrt 5 }}{b^3}.{\log _b}{a^4}\) có giá trị bằng bao nhiêu?
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, \(SA \bot \left( {ABCD} \right),SA = a.\) Gọi G là trọng tâm tam giác SCD.
- Cho tập hợp \(A = \left\{ {2;3;4;5;6;7} \right\}.
- Biến đổi \(\int\limits_0^3 {\frac{x}{{1 + \sqrt {1 + x} }}dx} \) thành \(\int\limits_1^2 {f\left( t \right)dt} \) với \(t = \sqrt {1
- Cho hàm số f(x) liên tục trên R và \(f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x.
- Cho hình chop S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết \(AD = 2a,AB = BC = SA = a.
- Cho một cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 0\) và tổng 100 số hạng đầu bằng 24850.
- Tìm số thực a để phương trình \({9^x} + 9 = a{3^x}cox\left( {\pi x} \right)\) chỉ có duy nhất một nghiệm thực
- Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây là đúng?
- Cho phần vật thể (T) giới hạn bởi hai mặt phẳng có phương trình x = 0 và x = 2 Cắt phần vật thể (T) bởi mặ
- Cho hình nón có chiều cao h. Tính chiều cao x của khối trụ có thể tích lớn nhất nội tiếp trong hình nón theo h.
- Cho a, b >0 nếu \({\log _8}a + {\log _4}{b^2} = 5\) và \({\log _4}{a^2} + {\log _8}b = 7\) thì giá trị của ab bằng.
- Cho hàm số \(y = \frac{{x + 2}}{{2x + 3}}\left( H \right).
- Với giá trị nào của tham số m thì phương trình \({4^x} - m{.
- Cho khối chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 48.
- Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho
- Cho hai số thực x,y thỏa mãn \(x \ge 0,y \ge 1,x + y = 3.
- Cho f(x) là một đa thức thỏa mãn \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 16}}{{x - 1}} = 24\).
- Lập phương trình tiếp tuyến với đồ thị hàm số y = f(x) thỏa mãn \({f^2}\left( {1 + 2x} \right) = x - {f^3}\left( {1 - x} \r
- Cho hàm số \(y = f\left( x \right) = \frac{{ax + b}}{{cx + d}}\) có đồ thị hàm số f(x) như trong hình vẽ bên.
- Tìm tất cả các giá trị thực của tham số m để hàm số \(y = \frac{m}{3}{x^3} + 2{x^2} + mx + 1\) có 2 điểm cực trị th
- Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn \(f\left( x \right) > 0,\forall x \in R.
- Tìm giá trị của tham số m để hàm số \(y = \frac{{\left( {m + 3} \right)x + 4}}{{x + m}}\) nghịch biến trên khoảng \(\le
- Cho hình cầu (S) tâm I, bán kính R không đổi.
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 8 Lớp 12 Life in the future
Tiếng Anh 12 mới Unit 4
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 4
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Sinh Học 12 Chương 1 Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Tây Tiến
Ai đã đặt tên cho dòng sông
Quá trình văn học và phong cách văn học
Sóng- Xuân Quỳnh
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Tính Nguyên Hàm X Trừ Sin2x Dx
-
Tính Nguyên Hàm Của (x-sin2x)dx
-
Tính Nguyên Hàm Của (x - Sin2x)dx
-
Tìm Nguyên Hàm Xsin(2x) | Mathway
-
[LỜI GIẢI] Tính Tích Phân ( X - Sin 2x )dx - Tự Học 365
-
Tính Nguyên Hàm Của (x-sin2x)dx
-
Tính Nguyên Hàm Xsin2xdx - Liuhinngoc
-
Tìm Nguyên Hàm Của Hàm Số Sau: ∫(x+1)sin2xdx - Selfomy Hỏi Đáp
-
Họ Nguyên Hàm Của Hàm Số F(x)=n2x Là - Cungthi.online
-
Họ Nguyên Hàm Của Hàm Số F(x)=x-sin2x Là...
-
Công Thức Nguyên Hàm, Bảng Nguyên Hàm đầy đủ & Mở Rộng
-
Bảng Các Công Thức Nguyên Hàm Từ Căn Bản Tới Nâng Cao - Công ...
-
Giải Toán 12 Bài 1. Nguyên Hàm
-
Họ Nguyên Hàm Của Hàm Số (f( X )=2x+sin 2x ) Là: