Tính Tích Vô Hướng Của Hai Vectơ - Lib24.Vn

A. Phương pháp giải

Trong không gian, cho hai vectơ u→v→ đều khác 0→ . Tích vô hướng của hai vectơ u→v→ là một số, kí hiệu là u→. v→, được xác định bởi công thức:

Trong trường hợp u→ = 0→ hoặc v→ = 0→, ta quy ước u→. v→ = 0→

B. Ví dụ minh họa

Ví dụ 1: Cho tứ diện đều ABCD, M là trung điểm của cạnh BC. Khi đó cos(AB; DM) bằng :

Hướng dẫn giải

Giả sử cạnh của tứ diện là a.

Tam giác BCD đều ⇒ DM = (a√3)/2.

Tam giác ABC đều ⇒ AM = (a√3)/2.

Chọn B.

Ví dụ 2: Cho tứ diện ABCD có AB = AC = AD và ∠BAC = ∠BAD = 60° . Hãy xác định góc giữa cặp vectơ AB→CD→ ?

A. 60° B. 45° C . 120° D. 90°

Hướng dẫn giải

Chọn D

Ví dụ 3: Cho hình chóp S.ABC có SA = SB = SC và

. Hãy xác định góc giữa cặp vectơ SC→AB→ ?

A. 120° B. 45° C. 60° D. 90°

Hướng dẫn giải

Chọn D

Ví dụ 4: Cho hình chóp S.ABC có SA = SB và CA = CB. Tính số đo của góc giữa hai đường thẳng chéo nhau SC và AB

A. 30° B. 45° C. 60° D. 90°

Hướng dẫn giải

Xét:

Vậy SC và AB vuông góc với nhau

Chọn D

Ví dụ 5: Cho hình chóp S.ABC có AB = AC và ∠SAC = ∠SAB . Tính số đo của góc giữa hai đường thẳng chéo nhau SA và BC

A. 30° B. 45° C. 60° D. 90°

Hướng dẫn giải

Vậy SA ⊥ BC

Chọn D

Ví dụ 6: Cho tứ diện ABCD. Chứng minh rằng nếu

thì AB ⊥ CD , AC ⊥ BD, AD ⊥ BC. Điều ngược lại đúng không?

Sau đây là lời giải:

Bước 1:

⇔ AC ⊥ BD

Bước 2: Chứng minh tương tự, từ AC→.AD→ = AD→.AB→ ta được AD→BC→AB→.AC→ = AD→.AB→ ta được AB→CD→

Bước 3: Ngược lại đúng, vì quá trình chứng minh ở bước 1 và 2 là quá trình biến đổi tương đương

Bài giải trên đúng hay sai? Nếu sai thì sai ở đâu?

A. Sai ở bước 3

B. Đúng

C. Sai ở bước 2

D. Sai ở bước 1

Hướng dẫn giải

Chọn B

Bài giải đúng

Được cập nhật: hôm kia lúc 23:57:47 | Lượt xem: 1015

Từ khóa » Tích Vô Hướng U.v