Tọa độ Của Vectơ - Tọa độ Của điểm
Có thể bạn quan tâm
1. Lý thuyết
Với hai điểm $A(x_A;y_A)$ và $B(x_B;y_B)$ ta có:
Tọa độ của vectơ AB là: $\vec{AB}=(x_B-x_A;y_B-y_A)$
Độ dài của vectơ AB là: $AB=|AB|=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}$
Với hai vectơ $\vec{a}(x_1;y_1)$ và $\vec{b}(x_2;y_2)$ ta có:
$\vec{a}=x_1.\vec{i}+y_1.\vec{j}$ với $\vec{i}(1;0)$ và $\vec{j}(0;1)$ là các vectơ đơn vị thuộc trục Ox và Oy.
$\vec{a}=\vec{b}$ <=> $\left\{\begin{array}{ll}x_1=x_2\\y_1=y_2\end{array}\right.$
$m.\vec{a}+n.\vec{b}=m. (x_1;y_1) +n. (x_2;y_2) =(mx_1+nx_2;m.y_1+n.y_2)$
2. Bài tập tìm tọa độ vectơ – tọa độ điểm
Bài tập 1: Biểu diễn vectơ $\vec{a}$ dưới dạng: $\vec{a}=x.\vec{i}+y.\vec{j}$ biếta. $\vec{a}(1;-1)$ $\hspace{2cm}$ b. $\vec{a}(3;5)$ c. $\vec{a}(6;0)$ $\hspace{3cm}$ d. $\vec{a}(0;-2)$
Hướng dẫn:
a. Ta có: $\vec{a}=1.\vec{i}-1.\vec{j} = \vec{i}-\vec{j}$
b. Ta có: $\vec{a}=3.\vec{i}+5.\vec{j}$
c. Ta có: $\vec{a}=6.\vec{i}-0.\vec{j} = 6\vec{i}$
d. Ta có: $\vec{a}=0.\vec{i}-2.\vec{j} = -2\vec{j}$
Bài tập 2: Xác định tọa độ của vectơ $\vec{a}$ biết:
a. $\vec{a}=3\vec{i}-4\vec{j}$ $\hspace{2cm}$ b. $\vec{a}=-2\vec{i}+\dfrac{2}{3}\vec{j}$ c. $\vec{a}=-4\vec{j}$ $\hspace{3cm}$ b. $\vec{a}=-7\vec{i}$
Hướn dẫn:
a. Ta có $\vec{a}= (3;-4)$
b. Ta có $\vec{a}= (-2;\dfrac{2}{3})$
c. Ta có $\vec{a}= (0;-4)$
d. Ta có $\vec{a}= (-7;0)$
Bài tập 3: Xác định tọa độ của vectơ $\vec{c}$ và tính độ dài của vectơ $\vec{c}$ biết:
a. $\vec{c}=\vec{a}+3\vec{b}$ với $\vec{a}(2;-1)$ và $\vec{b}(3;4)$b. $\vec{c}=2\vec{a}-5\vec{b}$ với $\vec{a}(-1;2)$ và $\vec{b}(-2;-3)$
Hướng dẫn:
a. Ta có: $\vec{c}=\vec{a}+3\vec{b}=(2;-1)+3(3;4)=(2+9;-1+12)=(11;11)$
Độ dài vectơ $\vec{c}$ là: $|\vec{c}|=\sqrt{11^2+11^2}=11\sqrt{2}$
b. Ta có: $\vec{c}=2\vec{a}-5\vec{b}=2.(-1;2)-5.(-2;-3)=(-2+10;4+15)=(8;19)$
Độ dài vectơ $\vec{c}$ là: $|\vec{c}|=\sqrt{8^2+19^2}=5\sqrt{17}$
Bài tập 4: Cho hai điểm $A(-1;1)$ và $B(1;3)$
a. Xác định tọa độ của các vectơ $\vec{AB}$ và $\vec{BA}$b. Tìm tọa độ điểm M sao cho: $\vec{BM}(3;0)$c. Tìm tọa độ của điểm N sao cho: $\vec{NA}(1;1)$
Hướng dẫn:
a. Ta có: $\vec{AB}(2;2)$ và $\vec{BA}(-2;-2)$
b. Giả sử tọa độ của điểm M là $M(x;y)$
Khi đó: $\vec{BM}=(x-1;y-3)$. Mà $\vec{BM}(3;0)$
=> $\left\{\begin{array}{ll}x-1=3\\y-3=0\end{array}\right.$ <=> $\left\{\begin{array}{ll}x=4\\y=3\end{array}\right.$ <=> $M(4;3)$
c. Giả sử tọa độ của điểm N là $N(x;y)$
Khi đó: $\vec{NA}=(-1-x;1-y)$. Mà $\vec{NA}(1;1)$
=> $\left\{\begin{array}{ll}-1-x=1\\1-y=1\end{array}\right.$ <=> $\left\{\begin{array}{ll}x=-2\\y=0\end{array}\right.$ <=> $N(-2;0)$
Bài giảng trên thầy đã chia sẻ với các bạn một số công thức và bài tập liên quan tới việc tìm tọa độ của vectơ và tìm tọa độ của một điểm. Hy vọng các bạn có một bài học bổ ích.
SUB ĐĂNG KÍ KÊNH GIÚP THẦY NHÉ
Từ khóa » Cách Tìm Vecto Ab
-
Cho Hai điểm A(1; 0) Và B( 0 ;-2). Vec Tơ đối Của Vectơ AB Có Tọa độ Là
-
Tìm Tọa độ Của Vecto, Của điểm Cực Hay - Toán Lớp 12
-
Tìm Tọa độ Vectơ AB; Vectơ BC - Giải Bài Tập Toán Học Lớp 10
-
Xác định Tọa độ Của Một Véc-tơ Và Một điểm Trên Mặt Phẳng Tọa độ Oxy
-
Tìm Tọa độ điểm, Tọa độ Vectơ Trên Mặt Phẳng Oxy
-
Tìm Tọa độ Các Vectơ AB, AC Biết A(2;3), B(-1;-1), C(6;0) - Hoc247
-
Vectơ Chỉ Phương Là Gì? Cách Tìm Vectơ Chỉ Phương Của đường ...
-
Giải Toán 10 Bài 2. Tích Vô Hướng Cảu Hai Vectơ
-
Cách Tìm Vecto Chỉ Phương Của đường Thẳng Cực Hay
-
Cách Tính độ Dài Vecto
-
[LỜI GIẢI] Tính Tọa độ Các Vecto AB Và AC - Tự Học 365
-
Tọa độ Véc Tơ Trong Hệ Trục Oxyz - Cộng đồng Học ...
-
Tìm Tọa độ Của Vecto, Của điểm Chi Tiết
-
Oxy: A(1;3) Và B(4;2). Tìm Vecto đơn Vị Cùng Phương Với Vecto AB ...