Tọa độ Giao điểm Của Hai đường Tiệm Cận Của đồ Thị Hàm Số \(y ...

YOMEDIA NONE Tọa độ giao điểm của hai đường tiệm cận của đồ thị hàm số \(y = \frac{{3x - 7}}{{x + 2}}\) là ADMICRO
  • Câu hỏi:

    Tọa độ giao điểm của hai đường tiệm cận của đồ thị hàm số \(y = \frac{{3x - 7}}{{x + 2}}\) là

    • A. (2;- 3)
    • B. (- 2;3)
    • C. (3;- 2)
    • D. (- 3;2)

    Lời giải tham khảo:

    Đáp án đúng: B

    Phương pháp:

    Tọa độ giao điểm của hai đường tiệm cận của đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}},\left( {ad - bc \ne 0} \right)\) là \(\left( { - \frac{d}{c};\frac{a}{c}} \right)\)

    Cách giải:

    Tọa độ giao điểm của hai đường tiệm cận của đồ thị hàm số \(y = \frac{{3x - 7}}{{x + 2}}\) là (- 2;3)

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 69276

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi thử THPT QG năm 2019 môn Toán Trường THPT Chuyên Hoàng Văn Thụ

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Họ nguyên hàm của hàm số \(f\left( x \right) = {x^2} + 3\) là
  • Tích phân \(\int\limits_0^1 {\frac{1}{{2x + 5}}dx} \) bằng
  • Cho số phức \(z = 2 + 5i.\) Điểm biểu diễn số phức z trong mặt phẳng Oxy có tọa độ là:
  • Một bạn học sinh có 3 cái quần khác nhau và 2 cái áo khác nhau.
  • Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm \(M\left( {2;0; - 1} \right)\) và có vecto chỉ phư
  • Trong không gian Oxyz, cho \(\overrightarrow a  = \left( {1;2;3} \right),\overrightarrow b  = \left( {4;5;6} \right).
  • Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y - 2z + 4 = 0.\) Một vecto pháp tuyến của mặt phẳng (P) là
  • Cho hàm số \(y=f(x)\) liên tục trên R và có bảng biến thiên như hình vẽ. Khẳng định nào sau đây là đúng?
  • Cho hàm số \(f(x)\) có đồ thị hàm số như hình vẽ. Khẳng định nào sai? 
  • Phương trình \({\log _2}\left( {x + 1} \right) = 2\) có nghiệm là
  • Đồ thị hàm số nào đi qua điểm M(1;2) ? 
  • Cho một cấp số cộng \((u_n)\) là \({u_1} = \frac{1}{2},{u_2} = \frac{7}{2}\). Khi đó công sai d bằng
  • Trong các hàm số sau đây, hàm số nào đồng biến trên R
  • Thể tích V của khối trụ có bán kính đáy r = 4 và chiều cao \(h = 4\sqrt 2 \) là:   
  • Thể tích của một khối lăng trụ có đường cao bằng \(3a\) diện tích mặt đáy bằng \(4a^2\) là:
  • Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với \(AB = a,BC = a\sqrt 3 .
  • Đạo hàm của hàm số \(y = {\left( {{x^3} - 2{x^2}} \right)^2}\) bằng
  • Gọi M và N là giao điểm của đồ thị hai hàm số \(y = {x^4} - 2{x^2} + 2\) và \(y =  - {x^2} + 4\).
  • Diện tích S của hình phẳng (H) giới hạn bởi hai đường cong \(y =  - {x^3} + 12x\) và \(y=-x^2\( là
  • Trong không gian Oxyz, cho hai điểm \(A\left( { - 2;1;1} \right),B\left( {0; - 1;1} \right).
  • Cho hàm số \(y =  - {x^4} + 2{x^2} + 3\) có giá trị cực tiểu lần lượt là \(y_1, y_2\) Khi đó \(y_1+y_2\) bằng
  • Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với \(AB = a,BC = a\sqrt 3 ,\) cạnh \(SA = 2a,SA \bot \left( {ABCD} \right).\) Gọi \(\alpha \) là góc giữa đường thẳng SC với mặt phẳng (ABCD) Giá trị \(\tan \alpha \) bằng
  • Thể tích của khối nón có đường sinh bằng 10 và bán kính đáy bằng 6 là:
  • Cho số phức z thỏa mãn \(\left( {1 + 2i} \right)z = 6 - 3i.\) Phần thực của số phức z là:  
  • Tập nghiệm S của bất phương trình \({\log _{\frac{1}{2}}}\left( {x{}^2 - 3x + 2} \right) \ge  - 1\) là
  • Trong không gian Oxyz cho hai mặt phẳng (left( P ight):2x - y - 2z - 9 = 0,) (left( Q ight):x - y - 6 = 0.
  • Gọi \(z_1, z_2\) là hai nghiệm của phương trình \({z^2} - 2z + 2018 = 0.
  • Tọa độ giao điểm của hai đường tiệm cận của đồ thị hàm số \(y = \frac{{3x - 7}}{{x + 2}}\) là
  • Giá trị nhỏ nhất của hàm số \(y = \frac{{x + 3}}{{2x - 3}}\) trên đoạn [2;5] bằng
  • Cho \(a = {\log _3}2,b = {\log _3}5.\) Khi đó \(\log 60\) bằng
  • Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, \(ABC = {30^0}.
  • Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, \(AC = 2\sqrt 3 a,BD = 2a,\) hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O đến (SAB) bằng \(\frac{{a\sqrt 3 }}{4}.\) Thể tích của khối chóp S.ABCD là:
  • Biết rằng trên khoảng \(\left( {\frac{3}{2}; + \infty } \right),\) hàm số \(f\left( x \right) = \frac{{20{x^2} - 30x + 7}}{{\sqrt {2x -
  • Cho hàm số \(f(x)\) liên tục trên R và \(f\left( 2 \right) = 16,\int\limits_0^2 {f\left( x \right)dx}  = 4.
  • Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây là đúng?
  • Số nghiệm của phương trình \({\left( {{{\log }_2}4x} \right)^2} - 3{\log _{\sqrt 2 }}x - 7 = 0\) là
  • Cho hàm số \(y =  - \frac{1}{3}{x^3} + m{x^2} + \left( {3m + 2} \right)x - 5.
  • Ba người A, B, C đi săn độc lập với nhau, cùng nổ súng bắn vào mục tiêu.
  • Có bao nhiêu số phức z thỏa mãn \(\left| {z - 2i} \right| = \sqrt 2 \) và \(z^2\) là số thuần ảo?
  • Trong không gian Oxyz cho hai đường thẳng \({d_1}:\frac{{x + 1}}{3} = \frac{{y - 1}}{2} = \frac{{z - 2}}{{ - 1}}\) , \({d_2}:\frac{{x
  • Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau \(y = \sqrt x ,y = 1\) đường thẳng x = 4 (tham khảo hình v�
  • Cho hình hộp ABCD.ABCD có thể tích bằng 1.
  • Cho hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ bên.
  • Cho hàm số \(y=f(x)\) biết hàm số \(f(x)\) có đạo hàm \(f(x)\) và hàm số \(y=f(x)\) có đồ thị như hình v�
  • Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B.
  • Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 16\)
  • Cho hàm số \(f\left( x \right) = m{x^3} - 3m{x^2} + \left( {3m - 2} \right)x + 2 - m\) với m là tham số thực.
  • Trong không gian Oxyz, cho hai điểm \(A\left( {1; - 1;2} \right),B\left( {3; - 4; - 2} \right)\) và đường thẳng \(d:\left\{ \begin{arr
  • Cho hai số phức \(z_1, z_2\) thỏa mãn \(\left| {{z_1}} \right| = 3,\left| {{z_2}} \right| = 4,\left| {{z_1} - {z_2}} \right| = \sqrt {41}
  • Cho hàm số \(f(x)\) liên tục trên R có đạo hàm thỏa mãn \(f\left( x \right) + 2f\left( x \right) = 1,\forall x \in R\) và \(
ADSENSE TRACNGHIEM Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 9 Lớp 12 Deserts

Tiếng Anh 12 mới Unit 5

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Hoá Học 12 Chương 5

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Sinh Học 12 Chương 2 Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 3 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Quá trình văn học và phong cách văn học

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON tracnghiem.net QC Bỏ qua >>

Từ khóa » Toạ độ Giao điểm Hai đường Tiệm Cận Của đồ Thị Hàm Số Là