Toán 11 Bài 1: Quy Tắc đếm - Hoc247
Có thể bạn quan tâm
Tổ hợp và Xác suất là khái niệm mà các em đã bước đầu được tìm hiểu ở chương trình THCS. Đến với Đại số và Giải tích 11, các em sẽ được tìm hiểu chi tiết và sâu hơn. Bài học Quy tắc đếm với Quy tắc cộng và Quy tắc nhân sẽ mở đầu cho chương này.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Quy tắc cộng
1.2. Quy tắc nhân
1.3. Phương pháp đếm bài toán tổ hợp dựa vào quy tắc cộng
1.4. Phương pháp đếm bài toán tổ hợp dựa vào quy tắc nhân
2. Bài tập minh hoạ
3. Luyện tập bài 1 chương 2 giải tích 11
3.1. Trắc nghiệm về quy tắc đếm
3.2. Bài tập SGK & Nâng cao về quy tắc đếm
4. Hỏi đáp về bài 1 chương 2 giải tích 11
Tóm tắt lý thuyết
1.1. Quy tắc cộng
a) Định nghĩa
- Xét một công việc \(H\).
- Giả sử \(H\) có \(k\) phương án \({H_1},{H_2},...,{H_k}\) thực hiện công việc \(H\). Nếu có \({m_1}\)cách thực hiện phương án \({H_1}\), có \({m_2}\) cách thực hiện phương án \({H_2}\),.., có \({m_k}\)cách thực hiện phương án \({H_k}\) và mỗi cách thực hiện phương án \({H_i}\) không trùng với bất kì cách thực hiện phương án \({H_j}\) (\(i \ne j;i,j \in \left\{ {1,2,...,k} \right\}\)) thì có \({m_1} + {m_2} + ... + {m_k}\) cách thực hiện công việc \(H\).
b) Công thức quy tắc cộng
- Nếu các tập \({A_1},{A_2},...,{A_n}\) đôi một rời nhau. Khi đó: \(\left| {{A_1} \cup {A_2} \cup ... \cup {A_n}} \right| = \left| {{A_1}} \right| + \left| {{A_2}} \right| + ... + \left| {{A_n}} \right|\)
1.2. Quy tắc nhân
a) Định nghĩa
- Giả sử một công việc \(H\) bao gồm \(k\) công đoạn \({H_1},{H_2},...,{H_k}\). Công đoạn \({H_1}\) có \({m_1}\) cách thực hiện, công đoạn \({H_2}\) có \({m_2}\) cách thực hiện,…, công đoạn \({H_k}\) có \({m_k}\) cách thực hiện. Khi đó công việc H có thể thực hiện theo \({m_1}.{m_2}...{m_k}\) cách.
b) Công thức quy tắc nhân
- Nếu các tập \({A_1},{A_2},...,{A_n}\) đôi một rời nhau. Khi đó: \(\left| {{A_1} \cap {A_2} \cap ... \cap {A_n}} \right| = \left| {{A_1}} \right|.\left| {{A_2}} \right|.....\left| {{A_n}} \right|\).
1.3. Phương pháp đếm bài toán tổ hợp dựa vào quy tắc cộng
- Để đếm số cách thực hiện một công việc \(H\) nào đó theo quy tắc cộng ta cần phân tích xem công việc H đó có bao nhiêu phương án thực hiện? Mỗi phương án có bao nhiêu cách chọn?
1.4. Phương pháp đếm bài toán tổ hợp dựa vào quy tắc nhân
- Để đếm số cách thực hiện công việc H theo quy tắc nhân, ta cần phân tích công việc H được chia làm các giai đoạn \({H_1},{H_2},...,{H_n}\) và đếm số cách thực hiện mỗi giai đoạn \({H_i}\) (\(i = 1,2,...,n\)).
Bài tập minh họa
Ví dụ 1:
Bạn cần mua một áo sơ mi cỡ 30 hoặc 32. Áo cỡ 30 có 3 màu khác nhau, áo cỡ 32 có 4 màu khác nhau. Hỏi bạn có bao nhiêu cách lựa chọn ?
Hướng dẫn giải:
Công việc ta cần thực hiện trong bài toán này là mua một chiếc ao sơ mi cỡ 30 hoặc 32. Để thực hiện công việc này ta có hai phương án.
Phương án 1: Mua áo cỡ 30: Phương án này ta có 3 cách chọn (chọn một trong ba màu).
Phương án 2: Mua áo cỡ 32: Phương án này ta có 4 cách chọn.
Vậy ta có cả thảy \(3 + 4 = 7\) cách lựa chọn.
Ví dụ 2:
Có 10 cuốn sách Toán khác nhau, 11 cuốn sách Văn khác nhau và 7 cuốn sách anh văn khác nhau. Một học sinh được chọn một quyển sách trong các quyển sách trên. Hỏi có bao nhiêu cách lựa chọn.
Hướng dẫn giải:
Để chọn một cuốn sách trong những cuốn sách trên ta có các phương án sau.
Phương án 1: Cuốn sách chọn là cuốn sách Toán: Ta có 10 cách chọn
Phương án 2: Cuốn sách chọn là cuốn sách Văn: Ta có 11 cách chọn
Phương án 3: Cuốn sách chọn là cuốn sách anh văn: Ta có 7 cách chọn
Vậy có \(10 + 11 + 7 = 28\) cách lựa chọn.
Ví dụ 3:
Có bao nhiêu cách xếp 4 người A,B,C,D lên 3 toa tàu, biết mỗi toa có thể chứa 4 người.
Hướng dẫn giải:
Để xếp A ta có 3 cách lên một trong ba toa.
Với mỗi cách xếp A ta có 3 cách xếp B lên toa tàu.
Với mỗi cách xếp A, B ta có 3 cách xếp C lên toa tàu.
Với mỗi cách xếp A, B, C ta có 3 cách xếp D lên toa tàu.
Vậy có \(3.3.3.3 = 81\) cách xếp 4 người lên toa tàu.
Ví dụ 4:
Cho các chữ số 1, 2, 3,..., 9. Từ các số đó có thể lập được bao nhiêu số
a) Có 4 chữ số đôi một khác nhau.
b) Số chẵn gồm 4 chữ số khác nhau và không vượt quá 2011.
Hướng dẫn giải:
Gọi số cần lập \(x = \overline {abcd} \), \(a,b,c,d \in \left\{ {1,2,3,4,5,6,7,8,9} \right\}\)
a) Có \(9.8.7.6 = 3024\) số
b) Vì \(x\) chẵn nên \(d \in \left\{ {2,4,6,8} \right\}\). Đồng thời \(x \le 2011 \Rightarrow a = 1\)
\(a = 1 \Rightarrow a\) có 1 cách chọn, khi đó \(d\) có 4 cách chọn; \(b,c\) có \(7.6\) cách
Suy ra có: \(1.4.6.7 = 168\) số
Ví dụ 5:
Từ các số \(1,2,3,4,5,6,7\) lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và chia hết cho 5.
Hướng dẫn giải:
Gọi số cần lập \(x = \overline {abcd} \); \(a,b,c,d \in \left\{ {1,2,3,4,5,6,7} \right\}\) và \(a,b,c,d\) đôi một khác nhau.
Vì \(x\) chia hết cho 5 nên \(d\) chỉ có thể là 5 \( \Rightarrow \) có 1 cách chọn d.
Có 6 cách chọn a, 5 cách chọn b và 4 cách chọn c.
Vậy có \(1.6.5.4 = 120\) số thỏa yêu cầu bài toán.
3. Luyện tập Bài 1 chương 2 giải tích 11
Tổ hợp và Xác suất là khái niệm mà các em đã bước đầu được tìm hiểu ở chương trình THCS. Đến với Đại số và Giải tích 11, các em sẽ được tìm hiểu chi tiết và sâu hơn. Bài học Quy tắc đếm với Quy tắc cộng và Quy tắc nhân sẽ mở đầu cho chương này.
3.1 Trắc nghiệm về Quy tắc đếm
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 2 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Từ thành phố \(A\) đến thành phố B có 6 con đường, từ thành phố B đến thành phố C có 7 con đường. Có bao nhiêu cách đi từ thành phố A đến thành phố C, biết phải đi qua thành phố B.
- A. 42
- B. 46
- C. 48
- D. 44
-
Câu 2:
Cho tập \(A = \left\{ {0,1,2,3,4,5,6} \right\}.\)Từ tập A ta có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau.
- A. 720
- B. 261
- C. 235
- D. 679
-
Câu 3:
Từ thành phố A có 10 con đường đi đến thành phố B, từ thành phố A có 9 con đường đi đến thành phố C, từ B đến D có 6 con đường, từ C đến D có 11 con đường và không có con đường nào nối B với C. Hỏi có bao nhiêu cách đi từ A đến D.
- A. 156
- B. 159
- C. 162
- D. 176
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2 Bài tập SGK và Nâng Cao về Quy tắc đếm
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 2 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 1 trang 46 SGK Đại số & Giải tích 11
Bài tập 2 trang 46 SGK Đại số & Giải tích 11
Bài tập 3 trang 46 SGK Đại số & Giải tích 11
Bài tập 4 trang 46 SGK Đại số & Giải tích 11
Bài tập 2.1 trang 72 SBT Toán 11
Bài tập 2.2 trang 72 SBT Toán 11
Bài tập 2.3 trang 72 SBT Toán 11
Bài tập 2.4 trang 72 SBT Toán 11
Bài tập 2.5 trang 72 SBT Toán 11
Bài tập 2.6 trang 72 SBT Toán 11
Bài tập 2.7 trang 73 SBT Toán 11
Bài tập 2.8 trang 73 SBT Toán 11
Bài tập 2.9 trang 73 SBT Toán 11
Bài tập 2.10 trang 73 SBT Toán 11
Bài tập 2.11 trang 73 SBT Toán 11
Bài tập 1 trang 54 SGK Toán 11 NC
Bài tập 2 trang 54 SGK Toán 11 NC
Bài tập 3 trang 54 SGK Toán 11 NC
Bài tập 4 trang 54 SGK Toán 11 NC
4. Hỏi đáp về bài 1 chương 2 giải tích 11
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 11 HỌC247
NONE Bài học cùng chương
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi HK2 lớp 12
Đề thi giữa HK1 lớp 11
Đề thi giữa HK2 lớp 11
Đề thi HK1 lớp 11
Tôi yêu em - Pu-Skin
Đề cương HK1 lớp 11
Video bồi dưỡng HSG môn Toán
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Chí Phèo
Cấp số cộng
Cấp số nhân
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Giải Sách Bài Tập Toán 11 Quy Tắc đếm
-
Giải Sbt Đại Số 11 Bài 1: Quy Tắc đếm
-
Giải SBT Toán đại Số Và Giải Tích 11 Bài 1: Quy Tắc đếm
-
Giải SBT Toán 11 Bài 1: Quy Tắc đếm
-
Giải Bài Tập SBT Toán 11 Bài 1: Quy Tắc đếm
-
Bài 1. Quy Tắc đếm
-
Sách Giải Bài Tập Toán Lớp 11 Bài 1: Quy Tắc Đếm
-
Giải Sách Bài Tập Toán 11 Bài 1: Quy Tắc Đếm
-
Bài 1,2,3,4 Trang 46 SGK Đại Số Và Giải Tích 11: Quy Tắc đếm
-
Giải Bài 1.1, 1.2, 1.3 Trang 78 Sách Bài Tập Đại Số Và Giải Tích 11
-
Nữ ?. Bài 1.2 Trang 78 Sách Bài Tập (SBT) Đại Số Và Giải Tích 11
-
Giải Toán 11 Bài 1. Quy Tắc đếm
-
Hướng Dẫn Giải Sách Bài Tập Toán 11 Tập 1 Trang 72, 73 Chính Xác
-
SBT Toán Lớp 11: Giải Sách Bài Tập Toán Giải Tích, Hình) 11
-
SBT Toán 11 - Tìm đáp án, Giải Bài Tập, để Học Tốt