Toán 11 Bài 2: Dãy Số
Có thể bạn quan tâm
Nội dung bài học sẽ giới thiệu đến các em khái niệm mới, cơ sở để các em học phân môn Giải tích trong chương trình Toán 11 là dãy số. Thông qua các ví dụ minh họa có hướng dẫn giải chi tiết các em sẽ nắm được phương pháp giải bài tập của nội dung này.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Dãy số
1.2. Cách cho dãy số
1.3. Dãy số tăng, dãy số giảm
1.4. Dãy số bị chặn
2. Bài tập minh hoạ
3. Luyện tập bài 2 chương 3 giải tích 11
3.1. Trắc nghiệm về dãy số
3.2. Bài tập SGK & Nâng cao về dãy số
4. Hỏi đáp về bài 2 chương 3 giải tích 11
Tóm tắt lý thuyết
1.1. Dãy số
- Dãy số là tập hợp các giá trị của hàm số \(u:\mathbb{N}* \to \mathbb{R},{\rm{ }}n \to u(n)\)
- Được sắp xếp theo thứ tự tăng dần liên tiếp theo đối số tự nhiên \(n\):
\(u(1),u(2),u(3),...,u(n),...\)
+ Ta kí hiệu \(u(n)\) bởi \({u_n}\) và gọi là số hạng thứ n hay số hạng tổng quát của dãy số, \({u_1}\) được gọi là số hạng đầu của dãy số.
+ Ta có thể viết dãy số dưới dạng khai triển \({u_1},{u_2},...,{u_n},...\) hoặc dạng rút gọn \(({u_n})\).
1.2. Cách cho dãy số
- Người ta thường cho dãy số theo các cách:
+ Cho số hạng tổng quát, tức là: cho hàm số u xác định dãy số đó
+ Cho bằng công thức truy hồi, tức là:
- Cho một vài số hạng đầu của dãy
- Cho hệ thức biểu thị số hạng tổng quát qua số hạng (hoặc một vài số hạng) đứng trước nó.
1.3. Dãy số tăng, dãy số giảm
- Dãy số \(({u_n})\) gọi là dãy tăng nếu \({u_n} < {u_{n + 1}}{\rm{ }}\forall n \in \mathbb{N}*\)
- Dãy số \(({u_n})\) gọi là dãy giảm nếu \({u_n} > {u_{n + 1}}{\rm{ }}\forall n \in \mathbb{N}*\)
1.4. Dãy số bị chặn
- Dãy số \(({u_n})\) gọi là dãy bị chặn trên nếu có một số thực \(M\) sao cho \({u_n} < M{\rm{ }}\forall n \in \mathbb{N}*\).
- Dãy số \(({u_n})\) gọi là dãy bị chặn dưới nếu có một số thực \(m\) sao cho \({u_n} > m{\rm{ }}\forall n \in \mathbb{N}*\).
- Dãy số vừa bị chặn trên vừa bị chặn dưới gọi là dãy bị chặn, tức là tồn tại số thực dương \(M\) sao cho \(\left| {{u_n}} \right| < M{\rm{ }}\forall n \in \mathbb{N}*\).
Bài tập minh họa
Vấn đề 1: Xác định số hạng của dãy số
Ví dụ 1:
Cho dãy số \(({u_n})\) được xác định bởi \({u_n} = \frac{{{n^2} + 3n + 7}}{{n + 1}}\)
a) Viết năm số hạng đầu của dãy;
b) Dãy số có bao nhiêu số hạng nhận giá trị nguyên.
Hướng dẫn:
a) Ta có năm số hạng đầu của dãy
\({u_1} = \frac{{{1^2} + 3.1 + 7}}{{1 + 1}} = \frac{{11}}{2}\), \({u_2} = \frac{{17}}{3},{u_3} = \frac{{25}}{4},{u_4} = 7,{u_5} = \frac{{47}}{6}\)
b) Ta có: \({u_n} = n + 2 + \frac{5}{{n + 1}}\), do đó \({u_n}\) nguyên khi và chỉ khi \(\frac{5}{{n + 1}}\) nguyên hay \(n + 1\) là ước của 5. Điều đó xảy ra khi \(n + 1 = 5 \Leftrightarrow n = 4\)
Vậy dãy số có duy nhất một số hạng nguyên là \({u_4} = 7\).
Ví dụ 2:
Cho dãy số \(({u_n})\)xác định bởi:\(\left\{ \begin{array}{l}{u_1} = 1\\{u_n} = 2{u_{n - 1}} + 3{\rm{ }}\forall n \ge 2\end{array} \right.\).
a) Viết năm số hạng đầu của dãy;
b) Chứng minh rằng \({u_n} = {2^{n + 1}} - 3\);
c) Số hạng thứ \({2012^{2012}}\) của dãy số có chia hết cho 7 không?
Hướng dẫn:
a) Ta có 5 số hạng đầu của dãy là:
\({u_1} = 1;\)\({u_2} = 2{u_1} + 3 = 5\); \({u_3} = 2{u_2} + 3 = 13;{\rm{ }}{u_4} = 2{u_3} + 3 = 29\)
\({u_5} = 2{u_4} + 3 = 61\).
b) Ta chứng minh bài toán bằng phương pháp quy nạp
* Với \(n = 1 \Rightarrow {u_1} = {2^{1 + 1}} - 3 = 1 \Rightarrow \) bài toán đúng với \(N = 1\)
* Giả sử \({u_k} = {2^{k + 1}} - 3\), ta chứng minh \({u_{k + 1}} = {2^{k + 2}} - 3\)
Thật vậy, theo công thức truy hồi ta có:
\({u_{k + 1}} = 2{u_k} + 3 = 2({2^{k + 1}} - 3) + 3 = {2^{k + 2}} - 3\) đpcm.
c) Ta xét phép chia của \(n\) cho 3
* \(n = 3k \Rightarrow {u_n} = 2({2^{3k}} - 1) - 1\)
Do \({2^{3k}} - 1 = {8^k} - 1 = 7.A \vdots 7 \Rightarrow {u_n}\) không chia hết cho 7
* \(n = 3k + 1 \Rightarrow {u_n} = 4({2^{3k}} - 1) + 1 \Rightarrow {u_n}\) không chia hết cho 7
* \(n = 3k + 2 \Rightarrow {u_n} = 8({2^{3k}} - 1) + 5 \Rightarrow {u_n}\) không chia hết cho 7
Vậy số hạng thứ \({2012^{2012}}\) của dãy số không chia hết cho 7.
Vấn đề 2: Dãy số đơn điệu – Dãy số bị chặn
Phương pháp:
Để xét tính đơn điệu của dãy số \(({u_n})\) ta xét : \({k_n} = {u_{n + 1}} - {u_n}\)
* Nếu \({k_n} > 0{\rm{ }}\forall n \in \mathbb{N}* \Rightarrow \) dãy \(({u_n})\) tăng
* Nếu \({k_n} < 0{\rm{ }}\forall n \in \mathbb{N}* \Rightarrow \) dãy \(({u_n})\) giảm.
Khi \({u_n} > 0{\rm{ }}\forall n \in \mathbb{N}*\) ta có thể xét \({t_n} = \frac{{{u_{n + 1}}}}{{{u_n}}}\)
* Nếu \({t_n} > 1 \Rightarrow \) dãy \(({u_n})\) tăng
* Nếu \({t_n} < 1 \Rightarrow \) dãy \(({u_n})\) giảm.
Để xét tính bị chặn của dãy số ta có thể dự đoán rồi chứng minh bằng quy nạp.
Ví dụ 3:
Cho dãy số \(({u_n}):\left\{ \begin{array}{l}{u_1} = 2\\{u_n} = \frac{{{u_{n - 1}} + 1}}{2}{\rm{ }}\forall n \ge 2\end{array} \right.\). Chứng minh rằng dãy \(({u_n})\) là dãy giảm và bị chặn.
Hướng dẫn:
Ta có: \({u_n} - {u_{n - 1}} = \frac{{1 - {u_{n - 1}}}}{2}\)
Do đó, để chứng minh dãy (un) giảm ta chứng minh \({u_n} > 1{\rm{ }}\forall n \ge 1\)
Thật vậy:
Với \(n = 1 \Rightarrow {u_1} = 2 > 1\)
Giả sử \({u_k} > 1 \Rightarrow {u_{k + 1}} = \frac{{{u_k} + 1}}{2} > \frac{{1 + 1}}{2} = 1\)
Theo nguyên lí quy nạp ta có \({u_n} > 1{\rm{ }}\forall n \ge 1\)
Suy ra \({u_n} - {u_{n - 1}} < 0 \Leftrightarrow {u_n} < {u_{n - 1}}{\rm{ }}\forall n \ge 2\) hay dãy (un) giảm
Theo chứng minh trên, ta có: \(1 < {u_n} < {u_1} = 2{\rm{ }}\forall n \ge 1\)
Vậy dãy (un) là dãy bị chặn.
3. Luyện tập Bài 2 chương 3 giải tích 11
Nội dung bài học sẽ giới thiệu đến các em khái niệm mới, cơ sở để các em học phân môn Giải tích trong chương trình Toán 11 là dãy số. Thông qua các ví dụ minh họa có hướng dẫn giải chi tiết các em sẽ nắm được phương pháp giải bài tập của nội dung này.
3.1 Trắc nghiệm về dãy số
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 3 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Tìm số hạng thứ 100 và 200 của dãy số \({u_n} = \frac{{2n + 1}}{{n + 2}}.\)
- A. \({u_{100}} = \frac{7}{{34}}\);\({u_{200}} = \frac{{401}}{{202}}\)
- B. \({u_{100}} = \frac{{67}}{{34}}\);\({u_{200}} = \frac{{401}}{{22}}\)
- C. \({u_{100}} = \frac{{67}}{4}\);\({u_{200}} = \frac{{401}}{{202}}\)
- D. \({u_{100}} = \frac{{67}}{{34}}\);\({u_{200}} = \frac{{401}}{{202}}\)
-
Câu 2:
Dãy số \({u_n} = \frac{{2n + 1}}{{n + 2}}\) có bao nhiêu số hạng là số nguyên.
- A. 1
- B. 12
- C. 2
- D. 0
-
Câu 3:
Dãy số \({u_n} = 2n + \sqrt {{n^2} + 4} \)có bao nhiêu số hạng làng số nguyên.
- A. 1
- B. 2
- C. 3
- D. 0
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2 Bài tập SGK và Nâng Cao về dãy số
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 3 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 1 trang 92 SGK Đại số & Giải tích 11
Bài tập 2 trang 92 SGK Đại số & Giải tích 11
Bài tập 3 trang 92 SGK Đại số & Giải tích 11
Bài tập 4 trang 92 SGK Đại số & Giải tích 11
Bài tập 5 trang 92 SGK Đại số & Giải tích 11
Bài tập 3.9 trang 117 SBT Toán 11
Bài tập 3.10 trang 117 SBT Toán 11
Bài tập 3.11 trang 118 SBT Toán 11
Bài tập 3.12 trang 118 SBT Toán 11
Bài tập 3.13 trang 118 SBT Toán 11
Bài tập 3.14 trang 118 SBT Toán 11
Bài tập 3.15 trang 118 SBT Toán 11
Bài tập 3.16 trang 118 SBT Toán 11
Bài tập 3.17 trang 118 SBT Toán 11
Bài tập 9 trang 105 SGK Toán 11 NC
Bài tập 10 trang 105 SGK Toán 11 NC
Bài tập 11 trang 106 SGK Toán 11 NC
Bài tập 12 trang 106 SGK Toán 11 NC
Bài tập 13 trang 106 SGK Toán 11 NC
Bài tập 14 trang 106 SGK Toán 11 NC
Bài tập 25 trang 109 SGK Toán 11 NC
Bài tập 16 trang 109 SGK Toán 11 NC
Bài tập 17 trang 109 SGK Toán 11 NC
Bài tập 18 trang 109 SGK Toán 11 NC
4. Hỏi đáp về bài 2 chương 3 giải tích 11
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 11 HỌC247
NONE Bài học cùng chương
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi HK2 lớp 12
Đề thi giữa HK1 lớp 11
Đề thi giữa HK2 lớp 11
Đề thi HK1 lớp 11
Video bồi dưỡng HSG môn Toán
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Tràng Giang
Đây thôn Vĩ Dạ
Cấp số cộng
Cấp số nhân
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
Hàm số liên tục
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Câu Hỏi Lý Thuyết Dãy Số
-
Lý Thuyết Dãy Số | SGK Toán Lớp 11
-
Lý Thuyết Dãy Số Hay, Chi Tiết Nhất - Toán Lớp 11
-
Lý Thuyết Dãy Số Lớp 11 - CungHocVui
-
Lý Thuyết Dãy Số
-
Lý Thuyết Dãy Số | SGK Toán Lớp 11 - SoanVan.NET
-
Lý Thuyết Dãy Số | Lời Giải Bài Tập Toán Lớp 11 Hay Nhất Tại ...
-
Lý Thuyết Dãy Số - Môn Toán - Tìm đáp án, Giải Bài Tập, để Học Tốt
-
Lý Thuyết Dãy Số Hay, Chi Tiết Nhất - Toán Lớp 11 - Haylamdo
-
Lý Thuyết Dãy Số (mới 2022 + Bài Tập) – Toán 11
-
Lý Thuyết Dãy Số: Bài 2. Dãy Số
-
30 Câu Trắc Nghiệm Dãy Số Có đáp án – Toán Lớp 11
-
Trắc Nghiệm Dãy Số Cấp Số Cộng CS Nhân Với 318 Câu Có đáp án
-
Bài Tập Trắc Nghiệm Dãy Số Cấp Số Cộng Cấp Số Nhân Có Đáp Án
-
Lý Thuyết Về Giới Hạn Của Dãy Số. - Tài Liệu - 123doc