Toán 11 Bài 2: Phương Trình Lượng Giác Cơ Bản - Lý Thuyết - HOC247

YOMEDIA NONE Trang chủ Toán 11 Chương 1: Hàm Số Lượng Giác Và Phương Trình Lượng Giác Toán 11 Bài 2: Phương trình lượng giác cơ bản ADMICRO Lý thuyết10 Trắc nghiệm31 BT SGK 278 FAQ

Thông qua bài học các em sẽ nắm được các dạng Phương trình lượng gác cơ bảncông thức nghiệm của chúng. Cùng với hệ thống bài tập minh họa có hướng dẫn giải sẽ giúp các em nắm vững nội dung bài học. Đây là bài toán nền tảng để các em học tiếp những dạng phương trình lượng phức tạp hơn hay giải một số dạng bài tập có liên quan đến lượng giác khác.

ATNETWORK YOMEDIA

1. Tóm tắt lý thuyết

1.1. Phương trình sinx= a

1.2. Phương trình cosx= a

1.3. Phương trình tanx= a

1.4. Phương trình cotx= a

2. Bài tập minh hoạ

3. Luyện tập bài 2 chương 1 giải tích 11

3.1 Trắc nghiệm về phương trình lượng giác

3.2 Bài tập SGK và Nâng Cao về hàm số lượng giác

4. Hỏi đáp về bài 2 chương 1 giải tích 11

Tóm tắt lý thuyết

1.1. Phương trình sinx= a

- Nếu \(|a|>1\): Phương trình vô nghiệm.

- Nếu \(|a|\leq 1\):

+ \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l} x = \alpha + k2\pi \\ x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

+ \(\sin x = \sin {\beta ^0} \Leftrightarrow \left[ \begin{array}{l} x = {\beta ^0} + k{360^0}\\ x = {180^0} - {\beta ^0} + k{360^0} \end{array} \right.\left( {k \in\mathbb{Z} } \right)\)

+ \(\sin x = a \Leftrightarrow \left[ \begin{array}{l} x = arc\sin a + k2\pi \\ x = \pi - arc\sin a + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)​

- Tổng quát: \(\sin f\left( x \right) = \sin g\left( x \right) \Leftrightarrow \left[ \begin{array}{l} f\left( x \right) = g\left( x \right) + k2\pi \\ f\left( x \right) = \pi - g\left( x \right) + k2\pi \end{array} \right.\,\,\left( {k \in\mathbb{Z} } \right)\)

- Các trường hợp đặc biệt:

\(\begin{array}{l} \oplus \,\,\,\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\\ \oplus \,\,\,\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in\mathbb{Z} } \right)\\ \oplus \,\,\,\sin x = 0 \Leftrightarrow x = k\pi \,\,\,\left( {k \in\mathbb{Z} } \right) \end{array}\)

1.2. Phương trình cosx= a

- Nếu \(|a|>1\): Phương trình vô nghiệm.

- Nếu \(|a|\leq 1\):

+ \(\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \left( {k \in\mathbb{Z} } \right)\)

+ \(\cos x = \cos {\beta ^0} \Leftrightarrow x = \pm {\beta ^0} + k{360^0}\left( {k \in \mathbb{Z}} \right)\)

+ \(\cos x = a \Leftrightarrow x = \pm \,arcc{\rm{os}}a + k2\pi \left( {k \in \mathbb{Z}} \right)\)

- Tổng quát: \(\cos f\left( x \right) =\cos g\left( x \right) \Leftrightarrow f\left( x \right) = \pm g\left( x \right) + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)

- Các trường hợp đặc biệt:

\(\begin{array}{l} \oplus \,\,\,\cos x = 1 \Leftrightarrow x = k2\pi \,\,\,\left( {k \in\mathbb{Z} } \right)\\ \oplus \,\,\,\cos x = - 1 \Leftrightarrow x = \pi + k2\pi \,\,\,\left( {k \in\mathbb{Z} } \right)\\ \oplus \,\,\,\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right) \end{array}\)

1.3. Phương trình tanx= a

- Tổng quát: \(\tan f\left( x \right) = \tan g\left( x \right) \Leftrightarrow f\left( x \right) = g\left( x \right) + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)

\(\begin{array}{l} \oplus \tan x = {\mathop{\rm t}\nolimits} {\rm{an}}\alpha \Leftrightarrow \,x\,{\rm{ = }}\,\alpha + k\pi \,\,\,\,\left( {k \in\mathbb{Z} } \right)\\ \oplus \tan x = {\mathop{\rm t}\nolimits} {\rm{an}}{\beta ^0} \Leftrightarrow \,x{\rm{ = }}{\beta ^0} + k{\rm{18}}{{\rm{0}}^0}\,\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \oplus \tan x = a \Leftrightarrow x{\rm{ = }}\arctan a\, + k\pi \,\,\,\,\left( {k \in\mathbb{Z} } \right) \end{array}\)

1.4. Phương trình cotx=a

- Tổng quát: \(\cot f\left( x \right) = \cot g\left( x \right) \Leftrightarrow f\left( x \right) = g\left( x \right) + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)

\(\begin{array}{l} \oplus \cot x = \cot \alpha \Leftrightarrow {\rm{x}}\,\,{\rm{ = }}\,\alpha \,{\rm{ + }}\,{\rm{k}}\pi \,\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \oplus \cot x = \cot {\beta ^0} \Leftrightarrow {\rm{x}}\,\,{\rm{ = }}\,{\beta ^0}{\rm{ + }}\,{\rm{k18}}{{\rm{0}}^0}\,\,\,\,\left( {k \in\mathbb{Z} } \right)\\ \oplus \cot x = a \Leftrightarrow {\rm{x}}\,\,{\rm{ = }}{\mathop{\rm arc}\nolimits} \cot \,a\,{\rm{ + }}\,{\rm{k}}\pi \,\,\,\,\left( {k \in\mathbb{Z} } \right) \end{array}\)

Bài tập minh họa

Ví dụ 1:

Giải các phương trình sau:

a) \(\sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} \right)=0\).

b) \(\sin x = \sin \frac{\pi }{{12}}\).

c) \(\sin 3x = \frac{1}{2}\).

d) \(\sin x = \frac{2}{3}\).

Lời giải:

a) \(\sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} \right)=0\Leftrightarrow \frac{{2x}}{3} - \frac{\pi }{3} = k\pi \Leftrightarrow \,\frac{{2x}}{3} = \frac{\pi }{3} + k\pi\)

\(\Leftrightarrow \,x = \frac{\pi }{2} + k\frac{{3\pi }}{2}\), \(k \in \mathbb{Z}.\)

Vậy phương trình có các nghiệm là: \(\,x = \frac{\pi }{2} + k\frac{{3\pi }}{2}\), \(k \in \mathbb{Z}.\)

b) \(\sin x = \sin \frac{\pi }{{12}} \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{{12}} + k2\pi \\ x = \pi - \frac{\pi }{{12}} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{{12}} + k2\pi \\ x = \frac{{11\pi }}{{12}} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình có các nghiệm là \(x = \frac{\pi }{{12}} + k2\pi ,k\in \mathbb{Z}\) và \(x = \frac{11\pi }{{12}} + k2\pi ,k\in \mathbb{Z}.\)

c) \(\sin 3x = \frac{1}{2} \Leftrightarrow \sin 3x = \sin \frac{\pi }{6} \Leftrightarrow \left[ \begin{array}{l} 3x = \frac{\pi }{6} + k2\pi \\ 3x = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{{18}} + k\frac{{2\pi }}{3}\\ x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3} \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy phương trình có các nghiệm là \(x = \frac{\pi }{{18}} + k\frac{{2\pi }}{3}, k \in \mathbb{Z}\) và \(x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3}, k \in \mathbb{Z}\).

d) \(\sin x = \frac{2}{3} \Leftrightarrow \left[ \begin{array}{l} x = \arcsin \frac{2}{3} + k2\pi \\ x = \pi - \arcsin \frac{2}{3} + k2\pi \end{array} \right.\left( {k \in\mathbb{Z} } \right)\)

Vậy phương trình có các nghiệm là \(x = \arcsin \frac{2}{3} + k2\pi,k \in \mathbb{Z}\) và \(x = \pi - \arcsin \frac{2}{3} + k2\pi, k \in \mathbb{Z}.\)

Ví dụ 2:

Giải các phương trình sau:

a) \(\cos \left( {\frac{{3x}}{2} - \frac{\pi }{4}} \right) = - \frac{1}{2}\).

b) \(\cos \left( {x + {{45}^0}} \right) = \frac{{\sqrt 2 }}{2}\).

Lời giải:

a) \(\cos \left( {\frac{{3x}}{2} - \frac{\pi }{4}} \right) = - \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l} \frac{{3x}}{2} - \frac{\pi }{4} = \frac{{2\pi }}{3} + k2\pi \\ \frac{{3x}}{2} - \frac{\pi }{4} = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\)\(\Leftrightarrow \left[ \begin{array}{l} x = \frac{{11\pi }}{{18}} + k\frac{{4\pi }}{3}\\ x = - \frac{{5\pi }}{{18}} + k\frac{{4\pi }}{3} \end{array} \right.{\mkern 1mu} ,{\mkern 1mu} k \in \mathbb{Z}.\)

Vậy phương trình có các nghiệm là: \({x = \frac{{11\pi }}{{18}} + k\frac{{4\pi }}{3}}, k \in \mathbb{Z}\) và \({x = - \frac{{5\pi }}{{18}} + k\frac{{4\pi }}{3}}, k \in \mathbb{Z}.\)

b) \(\cos \left( {x + {{45}^0}} \right) = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos \left( {x + {{45}^0}} \right) = c{\rm{os}}{45^0}\)

\(\Leftrightarrow \left[ \begin{array}{l} x + {45^0} = {45^0} + k{360^0}\\ x + {45^0} = - {45^0} + k{360^0} \end{array} \right.\)\(\Leftrightarrow \left[ \begin{array}{l} x = {45^0} + k{360^0}\\ x = - {90^0} + k{360^0} \end{array} \right.\left( {k \in \mathbb{Z}} \right).\)

Vậy phương trình có các nghiệm là: \({x = {{45}^0} + k{{360}^0}}, k \in \mathbb{Z}\) và \({x = - {{90}^0} + k{{360}^0}}, k \in \mathbb{Z}.\)

Ví dụ 3:

Giải các phương trình sau:

a) \(\tan x = \tan \frac{\pi }{3}\).

b) \(\tan (x - {15^0}) = \frac{{\sqrt 3 }}{3}\).

Lời giải:

a) \(\tan x = \tan \frac{\pi }{3} \Leftrightarrow x = \frac{\pi }{3} + k\pi ,\left( {k \in\mathbb{Z} } \right).\)

b) \(\tan (x - {15^0}) = \frac{{\sqrt 3 }}{3} \Leftrightarrow\) \(\tan (x - {15^0}) = \tan {30^0}\Leftrightarrow x = {45^0} + k{180^0} , k \in \mathbb{Z}.\)

Vậy các nghiệm của phương trình là \(x = {45^0} + k{180^0} , k \in \mathbb{Z}.\)

ví dụ 4:

Giải các phương trình sau:

a) \(\cot 4x = \,\cot \frac{{2\pi }}{7}\).

b) \(\cot 4x = - 3.\)

c) \(\cot \left( {2x - \frac{\pi }{6}} \right) = \frac{1}{{\sqrt 3 }}\).

Lời giải:

a) \(\cot 4x = \,\cot \frac{{2\pi }}{7}\) \(\Leftrightarrow 4x = \frac{{2\pi }}{7}\, + \,k\pi \Leftrightarrow \,x = \frac{\pi }{{14}} + \,k\frac{\pi }{4},\,k \in \mathbb{Z}.\)

Vậy các nghiệm của phương trình là: \(x = \frac{\pi }{{14}} + \,k\frac{\pi }{4};\,k \in \mathbb{Z}.\)

b) \(\cot 4x = - 3 \Leftrightarrow 4x = \arctan \left( { - 3} \right) + k\pi \Leftrightarrow x = \frac{1}{4}\arctan \left( { - 3} \right) + k\frac{\pi }{4},\left( {k \in \mathbb{Z}} \right).\)

Vậy các nghiệm của phương trình là: \(x = \frac{1}{4}\arctan \left( { - 3} \right) + k\frac{\pi }{4},\left( {k \in \mathbb{Z}} \right).\)

c) \(\cot \left( {2x - \frac{\pi }{6}} \right) = \frac{1}{{\sqrt 3 }} \Leftrightarrow \cot \left( {2x - \frac{\pi }{6}} \right) = \cot \frac{\pi }{6}\)

\(\Leftrightarrow 2x - \frac{\pi }{6} = \frac{\pi }{6} + k\pi \Leftrightarrow 2x = \frac{\pi }{3} + k\pi\)

\(\Leftrightarrow x = \frac{\pi }{6} + k\frac{\pi }{2},\left( {k \in\mathbb{Z} } \right).\)

Vậy các nghiệm của phương trình là: \(x = \frac{\pi }{6} + k\frac{\pi }{2},\left( {k \in\mathbb{Z} } \right).\)

3. Luyện tập Bài 2 chương 1 giải tích 11

Trong phạm vi bài học HỌC247 chỉ giới thiệu đến các em những nội dung cơ bản nhất về phương trình lượng giác. Đây là một dạng toán nền tảng không chỉ trong phạm vi khảo sát hàm số lượng giác mà còn được ứng dụng trong việc giải phương trình lượng giác, sự đơn điệu của hàm số lượng giác,....các em cần tìm hiểu thêm.

3.1 Trắc nghiệm về phương trình lượng giác

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 1 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Giải phương trình \(\sin 4x = \sin \frac{\pi }{5}.\)

    • A. \(x = \frac{\pi }{{20}} + k\frac{\pi }{2};x = \frac{\pi }{5} + k\frac{\pi }{2},k \in \mathbb{Z}.\)
    • B. \(x = \frac{\pi }{{20}} + k\frac{\pi }{2};x = \frac{\pi }{{10}} + k\frac{\pi }{2},k \in \mathbb{Z}.\)
    • C. \(x = \frac{\pi }{{10}} + k\frac{\pi }{2};x = \frac{\pi }{5} + k\frac{\pi }{2},k \in \mathbb{Z}.\)
    • D. \(x = \frac{{3\pi }}{5} + k\frac{\pi }{2};x = \frac{\pi }{{10}} + k\frac{\pi }{2},k \in \mathbb{Z}.\)
  • Câu 2:

    Giải phương trình \(\cos \left( {x + \frac{\pi }{{18}}} \right) = \frac{2}{5}.\)

    • A. \(x = \pm \arccos \frac{2}{5} - \frac{\pi }{{18}} + k2\pi ,k \in \mathbb{Z}.\)
    • B. \(x = \pm \arccos \frac{2}{5} + \frac{\pi }{{18}} + k2\pi ,k \in \mathbb{Z}.\)
    • C. \(x = \pm \arccos \frac{5}{2} - \frac{\pi }{{18}} + k2\pi ,k \in \mathbb{Z}.\)
    • D. \(x = \pm \arccos \frac{5}{2} + \frac{\pi }{{18}} + k2\pi ,k \in \mathbb{Z}.\)
  • Câu 3:

    Giải phương trình \(\cos (x - 5) = \frac{{\sqrt 3 }}{2}\) với \( - \pi < x < \pi .\)

    • A. \({x_1} = 5 - \frac{{11\pi }}{6};{x_2} = 5 - \frac{{13\pi }}{6}.\)
    • B. \({x_1} = 5 + \frac{{11\pi }}{6};{x_2} = 5 - \frac{{13\pi }}{6}.\)
    • C. \({x_1} = 5 - \frac{{11\pi }}{6};{x_2} = 5 + \frac{{13\pi }}{6}.\)
    • D. \({x_1} = 5 + \frac{{11\pi }}{6};{x_2} = 5 + \frac{{13\pi }}{6}.\)

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2 Bài tập SGK và Nâng Cao về hàm số lượng giác

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 1 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.

Bài tập 1 trang 28 SGK Đại số & Giải tích 11

Bài tập 2 trang 28 SGK Đại số & Giải tích 11

Bài tập 3 trang 28 SGK Đại số & Giải tích 11

Bài tập 4 trang 29 SGK Đại số & Giải tích 11

Bài tập 5 trang 29 SGK Đại số & Giải tích 11

Bài tập 6 trang 29 SGK Đại số & Giải tích 11

Bài tập 7 trang 29 SGK Đại số & Giải tích 11

Bài tập 1.14 trang 23 SBT Toán 11

Bài tập 1.15 trang 23 SBT Toán 11

Bài tập 1.16 trang 24 SBT Toán 11

Bài tập 1.17 trang 24 SBT Toán 11

Bài tập 1.18 trang 24 SBT Toán 11

Bài tập 1.19 trang 24 SBT Toán 10

Bài tập 1.20 trang 24 SBT Toán 11

Bài tập 1.21 trang 24 SBT Toán 10

Bài tập 1.22 trang 24 SBT Toán 11

Bài tập 1.23 trang 24 SBT Toán 10

Bài tập 1.24 trang 25 SBT Toán 11

Bài tập 14 trang 28 SGK Toán 11 NC

Bài tập 15 trang 28 SGK Toán 11 NC

Bài tập 16 trang 28 SGK Toán 11 NC

Bài tập 17 trang 29 SGK Toán 11 NC

Bài tập 18 trang 29 SGK Toán 11 NC

Bài tập 19 trang 29 SGK Toán 11 NC

Bài tập 20 trang 29 SGK Toán 11 NC

Bài tập 21 trang 29 SGK Toán 11 NC

Bài tập 22 trang 30 SGK Toán 11 NC

Bài tập 23 trang 31 SGK Toán 11 NC

Bài tập 24 trang 32 SGK Toán 11 NC

Bài tập 25 trang 32 SGK Toán 11 NC

Bài tập 26 trang 32 SGK Toán 11 NC

4. Hỏi đáp về bài 2 chương 1 giải tích 11

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.

-- Mod Toán Học 11 HỌC247

NONE

Bài học cùng chương

Bài 1: Hàm số lượng giác Toán 11 Bài 1: Hàm số lượng giác Bài 3: Một số phương trình lượng giác thường gặp Toán 11 Bài 3: Một số phương trình lượng giác thường gặp Ôn tập chương 1 Hàm số lượng giác và Phương trình lượng giác Toán 11 Ôn tập chương 1 Hàm số lượng giác và Phương trình lượng giác ADSENSE TRACNGHIEM Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 11

Toán 11

Toán 11 Kết Nối Tri Thức

Toán 11 Chân Trời Sáng Tạo

Toán 11 Cánh Diều

Giải bài tập Toán 11 KNTT

Giải bài tập Toán 11 CTST

Trắc nghiệm Toán 11

Ngữ văn 11

Ngữ Văn 11 Kết Nối Tri Thức

Ngữ Văn 11 Chân Trời Sáng Tạo

Ngữ Văn 11 Cánh Diều

Soạn Văn 11 Kết Nối Tri Thức

Soạn Văn 11 Chân Trời Sáng Tạo

Văn mẫu 11

Tiếng Anh 11

Tiếng Anh 11 Kết Nối Tri Thức

Tiếng Anh 11 Chân Trời Sáng Tạo

Tiếng Anh 11 Cánh Diều

Trắc nghiệm Tiếng Anh 11 KNTT

Trắc nghiệm Tiếng Anh 11 CTST

Tài liệu Tiếng Anh 11

Vật lý 11

Vật lý 11 Kết Nối Tri Thức

Vật Lý 11 Chân Trời Sáng Tạo

Vật lý 11 Cánh Diều

Giải bài tập Vật Lý 11 KNTT

Giải bài tập Vật Lý 11 CTST

Trắc nghiệm Vật Lý 11

Hoá học 11

Hoá học 11 Kết Nối Tri Thức

Hoá học 11 Chân Trời Sáng Tạo

Hoá Học 11 Cánh Diều

Giải bài tập Hoá 11 KNTT

Giải bài tập Hoá 11 CTST

Trắc nghiệm Hoá học 11

Sinh học 11

Sinh học 11 Kết Nối Tri Thức

Sinh Học 11 Chân Trời Sáng Tạo

Sinh Học 11 Cánh Diều

Giải bài tập Sinh học 11 KNTT

Giải bài tập Sinh học 11 CTST

Trắc nghiệm Sinh học 11

Lịch sử 11

Lịch Sử 11 Kết Nối Tri Thức

Lịch Sử 11 Chân Trời Sáng Tạo

Giải bài tập Sử 11 KNTT

Giải bài tập Sử 11 CTST

Trắc nghiệm Lịch Sử 11

Địa lý 11

Địa Lý 11 Kết Nối Tri Thức

Địa Lý 11 Chân Trời Sáng Tạo

Giải bài tập Địa 11 KNTT

Giải bài tập Địa 11 CTST

Trắc nghiệm Địa lý 11

GDKT & PL 11

GDKT & PL 11 Kết Nối Tri Thức

GDKT & PL 11 Chân Trời Sáng Tạo

Giải bài tập KTPL 11 KNTT

Giải bài tập KTPL 11 CTST

Trắc nghiệm GDKT & PL 11

Công nghệ 11

Công nghệ 11 Kết Nối Tri Thức

Công nghệ 11 Cánh Diều

Giải bài tập Công nghệ 11 KNTT

Giải bài tập Công nghệ 11 Cánh Diều

Trắc nghiệm Công nghệ 11

Tin học 11

Tin học 11 Kết Nối Tri Thức

Tin học 11 Cánh Diều

Giải bài tập Tin học 11 KNTT

Giải bài tập Tin học 11 Cánh Diều

Trắc nghiệm Tin học 11

Cộng đồng

Hỏi đáp lớp 11

Tư liệu lớp 11

Xem nhiều nhất tuần

Đề thi HK2 lớp 12

Đề thi giữa HK1 lớp 11

Đề thi giữa HK2 lớp 11

Đề thi HK1 lớp 11

Video bồi dưỡng HSG môn Toán

Công nghệ 11 Bài 16: Công nghệ chế tạo phôi

Vội vàng

Lưu biệt khi xuất dương

Tràng Giang

Cấp số cộng

Cấp số nhân

Hầu trời- Tản Đà

Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ

Giới hạn của hàm số

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON tracnghiem.net QC Bỏ qua >>

Từ khóa » Hàm Số Lượng Giác Cơ Bản Lớp 11