Toán 11 Bài 2: Phương Trình Lượng Giác Cơ Bản - Lý Thuyết - HOC247
Có thể bạn quan tâm
Thông qua bài học các em sẽ nắm được các dạng Phương trình lượng gác cơ bản và công thức nghiệm của chúng. Cùng với hệ thống bài tập minh họa có hướng dẫn giải sẽ giúp các em nắm vững nội dung bài học. Đây là bài toán nền tảng để các em học tiếp những dạng phương trình lượng phức tạp hơn hay giải một số dạng bài tập có liên quan đến lượng giác khác.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Phương trình sinx= a
1.2. Phương trình cosx= a
1.3. Phương trình tanx= a
1.4. Phương trình cotx= a
2. Bài tập minh hoạ
3. Luyện tập bài 2 chương 1 giải tích 11
3.1 Trắc nghiệm về phương trình lượng giác
3.2 Bài tập SGK và Nâng Cao về hàm số lượng giác
4. Hỏi đáp về bài 2 chương 1 giải tích 11
Tóm tắt lý thuyết
1.1. Phương trình sinx= a
- Nếu \(|a|>1\): Phương trình vô nghiệm.
- Nếu \(|a|\leq 1\):
+ \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l} x = \alpha + k2\pi \\ x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
+ \(\sin x = \sin {\beta ^0} \Leftrightarrow \left[ \begin{array}{l} x = {\beta ^0} + k{360^0}\\ x = {180^0} - {\beta ^0} + k{360^0} \end{array} \right.\left( {k \in\mathbb{Z} } \right)\)
+ \(\sin x = a \Leftrightarrow \left[ \begin{array}{l} x = arc\sin a + k2\pi \\ x = \pi - arc\sin a + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Tổng quát: \(\sin f\left( x \right) = \sin g\left( x \right) \Leftrightarrow \left[ \begin{array}{l} f\left( x \right) = g\left( x \right) + k2\pi \\ f\left( x \right) = \pi - g\left( x \right) + k2\pi \end{array} \right.\,\,\left( {k \in\mathbb{Z} } \right)\)
- Các trường hợp đặc biệt:
\(\begin{array}{l} \oplus \,\,\,\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\\ \oplus \,\,\,\sin x = - 1 \Leftrightarrow x = - \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in\mathbb{Z} } \right)\\ \oplus \,\,\,\sin x = 0 \Leftrightarrow x = k\pi \,\,\,\left( {k \in\mathbb{Z} } \right) \end{array}\)
1.2. Phương trình cosx= a
- Nếu \(|a|>1\): Phương trình vô nghiệm.
- Nếu \(|a|\leq 1\):
+ \(\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \left( {k \in\mathbb{Z} } \right)\)
+ \(\cos x = \cos {\beta ^0} \Leftrightarrow x = \pm {\beta ^0} + k{360^0}\left( {k \in \mathbb{Z}} \right)\)
+ \(\cos x = a \Leftrightarrow x = \pm \,arcc{\rm{os}}a + k2\pi \left( {k \in \mathbb{Z}} \right)\)
- Tổng quát: \(\cos f\left( x \right) =\cos g\left( x \right) \Leftrightarrow f\left( x \right) = \pm g\left( x \right) + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
- Các trường hợp đặc biệt:
\(\begin{array}{l} \oplus \,\,\,\cos x = 1 \Leftrightarrow x = k2\pi \,\,\,\left( {k \in\mathbb{Z} } \right)\\ \oplus \,\,\,\cos x = - 1 \Leftrightarrow x = \pi + k2\pi \,\,\,\left( {k \in\mathbb{Z} } \right)\\ \oplus \,\,\,\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \,\,\,\left( {k \in \mathbb{Z}} \right) \end{array}\)
1.3. Phương trình tanx= a
- Tổng quát: \(\tan f\left( x \right) = \tan g\left( x \right) \Leftrightarrow f\left( x \right) = g\left( x \right) + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\(\begin{array}{l} \oplus \tan x = {\mathop{\rm t}\nolimits} {\rm{an}}\alpha \Leftrightarrow \,x\,{\rm{ = }}\,\alpha + k\pi \,\,\,\,\left( {k \in\mathbb{Z} } \right)\\ \oplus \tan x = {\mathop{\rm t}\nolimits} {\rm{an}}{\beta ^0} \Leftrightarrow \,x{\rm{ = }}{\beta ^0} + k{\rm{18}}{{\rm{0}}^0}\,\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \oplus \tan x = a \Leftrightarrow x{\rm{ = }}\arctan a\, + k\pi \,\,\,\,\left( {k \in\mathbb{Z} } \right) \end{array}\)
1.4. Phương trình cotx=a
- Tổng quát: \(\cot f\left( x \right) = \cot g\left( x \right) \Leftrightarrow f\left( x \right) = g\left( x \right) + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\(\begin{array}{l} \oplus \cot x = \cot \alpha \Leftrightarrow {\rm{x}}\,\,{\rm{ = }}\,\alpha \,{\rm{ + }}\,{\rm{k}}\pi \,\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \oplus \cot x = \cot {\beta ^0} \Leftrightarrow {\rm{x}}\,\,{\rm{ = }}\,{\beta ^0}{\rm{ + }}\,{\rm{k18}}{{\rm{0}}^0}\,\,\,\,\left( {k \in\mathbb{Z} } \right)\\ \oplus \cot x = a \Leftrightarrow {\rm{x}}\,\,{\rm{ = }}{\mathop{\rm arc}\nolimits} \cot \,a\,{\rm{ + }}\,{\rm{k}}\pi \,\,\,\,\left( {k \in\mathbb{Z} } \right) \end{array}\)
Bài tập minh họa
Ví dụ 1:
Giải các phương trình sau:
a) \(\sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} \right)=0\).
b) \(\sin x = \sin \frac{\pi }{{12}}\).
c) \(\sin 3x = \frac{1}{2}\).
d) \(\sin x = \frac{2}{3}\).
Lời giải:
a) \(\sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} \right)=0\Leftrightarrow \frac{{2x}}{3} - \frac{\pi }{3} = k\pi \Leftrightarrow \,\frac{{2x}}{3} = \frac{\pi }{3} + k\pi\)
\(\Leftrightarrow \,x = \frac{\pi }{2} + k\frac{{3\pi }}{2}\), \(k \in \mathbb{Z}.\)
Vậy phương trình có các nghiệm là: \(\,x = \frac{\pi }{2} + k\frac{{3\pi }}{2}\), \(k \in \mathbb{Z}.\)
b) \(\sin x = \sin \frac{\pi }{{12}} \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{{12}} + k2\pi \\ x = \pi - \frac{\pi }{{12}} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{{12}} + k2\pi \\ x = \frac{{11\pi }}{{12}} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Vậy phương trình có các nghiệm là \(x = \frac{\pi }{{12}} + k2\pi ,k\in \mathbb{Z}\) và \(x = \frac{11\pi }{{12}} + k2\pi ,k\in \mathbb{Z}.\)
c) \(\sin 3x = \frac{1}{2} \Leftrightarrow \sin 3x = \sin \frac{\pi }{6} \Leftrightarrow \left[ \begin{array}{l} 3x = \frac{\pi }{6} + k2\pi \\ 3x = \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \frac{\pi }{{18}} + k\frac{{2\pi }}{3}\\ x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3} \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Vậy phương trình có các nghiệm là \(x = \frac{\pi }{{18}} + k\frac{{2\pi }}{3}, k \in \mathbb{Z}\) và \(x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3}, k \in \mathbb{Z}\).
d) \(\sin x = \frac{2}{3} \Leftrightarrow \left[ \begin{array}{l} x = \arcsin \frac{2}{3} + k2\pi \\ x = \pi - \arcsin \frac{2}{3} + k2\pi \end{array} \right.\left( {k \in\mathbb{Z} } \right)\)
Vậy phương trình có các nghiệm là \(x = \arcsin \frac{2}{3} + k2\pi,k \in \mathbb{Z}\) và \(x = \pi - \arcsin \frac{2}{3} + k2\pi, k \in \mathbb{Z}.\)
Ví dụ 2:
Giải các phương trình sau:
a) \(\cos \left( {\frac{{3x}}{2} - \frac{\pi }{4}} \right) = - \frac{1}{2}\).
b) \(\cos \left( {x + {{45}^0}} \right) = \frac{{\sqrt 2 }}{2}\).
Lời giải:
a) \(\cos \left( {\frac{{3x}}{2} - \frac{\pi }{4}} \right) = - \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l} \frac{{3x}}{2} - \frac{\pi }{4} = \frac{{2\pi }}{3} + k2\pi \\ \frac{{3x}}{2} - \frac{\pi }{4} = - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\)\(\Leftrightarrow \left[ \begin{array}{l} x = \frac{{11\pi }}{{18}} + k\frac{{4\pi }}{3}\\ x = - \frac{{5\pi }}{{18}} + k\frac{{4\pi }}{3} \end{array} \right.{\mkern 1mu} ,{\mkern 1mu} k \in \mathbb{Z}.\)
Vậy phương trình có các nghiệm là: \({x = \frac{{11\pi }}{{18}} + k\frac{{4\pi }}{3}}, k \in \mathbb{Z}\) và \({x = - \frac{{5\pi }}{{18}} + k\frac{{4\pi }}{3}}, k \in \mathbb{Z}.\)
b) \(\cos \left( {x + {{45}^0}} \right) = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos \left( {x + {{45}^0}} \right) = c{\rm{os}}{45^0}\)
\(\Leftrightarrow \left[ \begin{array}{l} x + {45^0} = {45^0} + k{360^0}\\ x + {45^0} = - {45^0} + k{360^0} \end{array} \right.\)\(\Leftrightarrow \left[ \begin{array}{l} x = {45^0} + k{360^0}\\ x = - {90^0} + k{360^0} \end{array} \right.\left( {k \in \mathbb{Z}} \right).\)
Vậy phương trình có các nghiệm là: \({x = {{45}^0} + k{{360}^0}}, k \in \mathbb{Z}\) và \({x = - {{90}^0} + k{{360}^0}}, k \in \mathbb{Z}.\)
Ví dụ 3:
Giải các phương trình sau:
a) \(\tan x = \tan \frac{\pi }{3}\).
b) \(\tan (x - {15^0}) = \frac{{\sqrt 3 }}{3}\).
Lời giải:
a) \(\tan x = \tan \frac{\pi }{3} \Leftrightarrow x = \frac{\pi }{3} + k\pi ,\left( {k \in\mathbb{Z} } \right).\)
b) \(\tan (x - {15^0}) = \frac{{\sqrt 3 }}{3} \Leftrightarrow\) \(\tan (x - {15^0}) = \tan {30^0}\Leftrightarrow x = {45^0} + k{180^0} , k \in \mathbb{Z}.\)
Vậy các nghiệm của phương trình là \(x = {45^0} + k{180^0} , k \in \mathbb{Z}.\)
ví dụ 4:
Giải các phương trình sau:
a) \(\cot 4x = \,\cot \frac{{2\pi }}{7}\).
b) \(\cot 4x = - 3.\)
c) \(\cot \left( {2x - \frac{\pi }{6}} \right) = \frac{1}{{\sqrt 3 }}\).
Lời giải:
a) \(\cot 4x = \,\cot \frac{{2\pi }}{7}\) \(\Leftrightarrow 4x = \frac{{2\pi }}{7}\, + \,k\pi \Leftrightarrow \,x = \frac{\pi }{{14}} + \,k\frac{\pi }{4},\,k \in \mathbb{Z}.\)
Vậy các nghiệm của phương trình là: \(x = \frac{\pi }{{14}} + \,k\frac{\pi }{4};\,k \in \mathbb{Z}.\)
b) \(\cot 4x = - 3 \Leftrightarrow 4x = \arctan \left( { - 3} \right) + k\pi \Leftrightarrow x = \frac{1}{4}\arctan \left( { - 3} \right) + k\frac{\pi }{4},\left( {k \in \mathbb{Z}} \right).\)
Vậy các nghiệm của phương trình là: \(x = \frac{1}{4}\arctan \left( { - 3} \right) + k\frac{\pi }{4},\left( {k \in \mathbb{Z}} \right).\)
c) \(\cot \left( {2x - \frac{\pi }{6}} \right) = \frac{1}{{\sqrt 3 }} \Leftrightarrow \cot \left( {2x - \frac{\pi }{6}} \right) = \cot \frac{\pi }{6}\)
\(\Leftrightarrow 2x - \frac{\pi }{6} = \frac{\pi }{6} + k\pi \Leftrightarrow 2x = \frac{\pi }{3} + k\pi\)
\(\Leftrightarrow x = \frac{\pi }{6} + k\frac{\pi }{2},\left( {k \in\mathbb{Z} } \right).\)
Vậy các nghiệm của phương trình là: \(x = \frac{\pi }{6} + k\frac{\pi }{2},\left( {k \in\mathbb{Z} } \right).\)
3. Luyện tập Bài 2 chương 1 giải tích 11
Trong phạm vi bài học HỌC247 chỉ giới thiệu đến các em những nội dung cơ bản nhất về phương trình lượng giác. Đây là một dạng toán nền tảng không chỉ trong phạm vi khảo sát hàm số lượng giác mà còn được ứng dụng trong việc giải phương trình lượng giác, sự đơn điệu của hàm số lượng giác,....các em cần tìm hiểu thêm.
3.1 Trắc nghiệm về phương trình lượng giác
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 1 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Giải phương trình \(\sin 4x = \sin \frac{\pi }{5}.\)
- A. \(x = \frac{\pi }{{20}} + k\frac{\pi }{2};x = \frac{\pi }{5} + k\frac{\pi }{2},k \in \mathbb{Z}.\)
- B. \(x = \frac{\pi }{{20}} + k\frac{\pi }{2};x = \frac{\pi }{{10}} + k\frac{\pi }{2},k \in \mathbb{Z}.\)
- C. \(x = \frac{\pi }{{10}} + k\frac{\pi }{2};x = \frac{\pi }{5} + k\frac{\pi }{2},k \in \mathbb{Z}.\)
- D. \(x = \frac{{3\pi }}{5} + k\frac{\pi }{2};x = \frac{\pi }{{10}} + k\frac{\pi }{2},k \in \mathbb{Z}.\)
-
Câu 2:
Giải phương trình \(\cos \left( {x + \frac{\pi }{{18}}} \right) = \frac{2}{5}.\)
- A. \(x = \pm \arccos \frac{2}{5} - \frac{\pi }{{18}} + k2\pi ,k \in \mathbb{Z}.\)
- B. \(x = \pm \arccos \frac{2}{5} + \frac{\pi }{{18}} + k2\pi ,k \in \mathbb{Z}.\)
- C. \(x = \pm \arccos \frac{5}{2} - \frac{\pi }{{18}} + k2\pi ,k \in \mathbb{Z}.\)
- D. \(x = \pm \arccos \frac{5}{2} + \frac{\pi }{{18}} + k2\pi ,k \in \mathbb{Z}.\)
-
Câu 3:
Giải phương trình \(\cos (x - 5) = \frac{{\sqrt 3 }}{2}\) với \( - \pi < x < \pi .\)
- A. \({x_1} = 5 - \frac{{11\pi }}{6};{x_2} = 5 - \frac{{13\pi }}{6}.\)
- B. \({x_1} = 5 + \frac{{11\pi }}{6};{x_2} = 5 - \frac{{13\pi }}{6}.\)
- C. \({x_1} = 5 - \frac{{11\pi }}{6};{x_2} = 5 + \frac{{13\pi }}{6}.\)
- D. \({x_1} = 5 + \frac{{11\pi }}{6};{x_2} = 5 + \frac{{13\pi }}{6}.\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2 Bài tập SGK và Nâng Cao về hàm số lượng giác
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 1 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 1 trang 28 SGK Đại số & Giải tích 11
Bài tập 2 trang 28 SGK Đại số & Giải tích 11
Bài tập 3 trang 28 SGK Đại số & Giải tích 11
Bài tập 4 trang 29 SGK Đại số & Giải tích 11
Bài tập 5 trang 29 SGK Đại số & Giải tích 11
Bài tập 6 trang 29 SGK Đại số & Giải tích 11
Bài tập 7 trang 29 SGK Đại số & Giải tích 11
Bài tập 1.14 trang 23 SBT Toán 11
Bài tập 1.15 trang 23 SBT Toán 11
Bài tập 1.16 trang 24 SBT Toán 11
Bài tập 1.17 trang 24 SBT Toán 11
Bài tập 1.18 trang 24 SBT Toán 11
Bài tập 1.19 trang 24 SBT Toán 10
Bài tập 1.20 trang 24 SBT Toán 11
Bài tập 1.21 trang 24 SBT Toán 10
Bài tập 1.22 trang 24 SBT Toán 11
Bài tập 1.23 trang 24 SBT Toán 10
Bài tập 1.24 trang 25 SBT Toán 11
Bài tập 14 trang 28 SGK Toán 11 NC
Bài tập 15 trang 28 SGK Toán 11 NC
Bài tập 16 trang 28 SGK Toán 11 NC
Bài tập 17 trang 29 SGK Toán 11 NC
Bài tập 18 trang 29 SGK Toán 11 NC
Bài tập 19 trang 29 SGK Toán 11 NC
Bài tập 20 trang 29 SGK Toán 11 NC
Bài tập 21 trang 29 SGK Toán 11 NC
Bài tập 22 trang 30 SGK Toán 11 NC
Bài tập 23 trang 31 SGK Toán 11 NC
Bài tập 24 trang 32 SGK Toán 11 NC
Bài tập 25 trang 32 SGK Toán 11 NC
Bài tập 26 trang 32 SGK Toán 11 NC
4. Hỏi đáp về bài 2 chương 1 giải tích 11
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 11 HỌC247
NONE Bài học cùng chương
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi HK2 lớp 12
Đề thi giữa HK1 lớp 11
Đề thi giữa HK2 lớp 11
Đề thi HK1 lớp 11
Video bồi dưỡng HSG môn Toán
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Vội vàng
Lưu biệt khi xuất dương
Tràng Giang
Cấp số cộng
Cấp số nhân
Hầu trời- Tản Đà
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
Giới hạn của hàm số
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Hàm Số Lượng Giác Cơ Bản Lớp 11
-
Trọn Bộ Công Thức Toán 11 - Phần Đại Số Giải Tích - Kiến Guru
-
Lý Thuyết Và Các Công Thức Lượng Giác Đầy Đủ Nhất - Marathon
-
Hàm Số Lượng Giác (Tiết 1) – Môn Toán Lớp 11 – Thầy Nguyễn Công ...
-
Giải Phương Trình Lượng Giác Cơ Bản - Toán 11 - Thầy Nguyễn Công ...
-
Phương Trình Lượng Giác Cơ Bản - Toán 11
-
Cách Giải Phương Trình Lượng Giác Cơ Bản Cực Hay - Toán Lớp 11
-
Giải Toán 11 Bài 1: Hàm Số Lượng Giác
-
200 Bài Tập Phương Trình Lượng Giác Lớp 11 Có Hướng Dẫn Giải Chi Tiết
-
Phương Trình Lượng Giác Cơ Bản
-
"Nhớ Mặt" Các Hàm Số Lượng Giác Lớp 11 Bài 1 Quan Trọng Nhất
-
Cách Giải Phương Trình Lượng Giác Cơ Bản - Toán Lớp 11 - Haylamdo
-
Phương Trình Lượng Giác Cơ Bản Lớp 11
-
Công Thức Lượng Giác Lớp 11 Hay Nhất - TopLoigiai
-
[SGK Scan] Hàm Số Lượng Giác - Sách Giáo Khoa