Toán 11 Bài 2: Quy Tắc Tính đạo Hàm - HOC247
Có thể bạn quan tâm
Ở bài 1, các em đã được tìm hiều về khái niệm đạo hàm và phương pháp tính đạo hàm bằng định nghĩa. Khuyết điểm của phương pháp này là rất khó áp dụng với các hàm số phức tạp, và phải trải qua nhiều công đoạn tính toán. Bài 2 Quy tắc tính đạo hàm sẽ giới thiệu đến các em công thức tính đạo hàm của các hàm số thường gặp và hàm hợp của chúng, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em hình thành và rèn luyện kĩ năng tính đạo hàm.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Đạo hàm của một số hàm số thường gặp
1.2. Đạo hàm của tổng, hiệu, tích, thương
1.3. Đạo hàm với hàm hợp
2. Bài tập minh hoạ
3. Luyện tập bài 2 chương 5 giải tích 11
3.1. Trắc nghiệm về Quy tắc tính đạo hàm
3.2. Bài tập SGK & Nâng cao về Quy tắc tính đạo hàm
4. Hỏi đáp về bài 2 chương 5 giải tích 11
Tóm tắt lý thuyết
1.1. Đạo hàm của một số hàm số thường gặp
- Định lý 1: Hàm số \(y = {x^n}(n \in \mathbb{N},n > 1\)) có đạo hàm với mọi \(x \in\mathbb{R}\) và: \({\left( {{x^n}} \right)'} = n{x^{n - 1}}.\)
- Nhận xét:
+ (c)'=0 (với c là hằng số).
+ (x)'=1.
- Định lý 2: Hàm số \(y= \sqrt x\) có đạo hàm với mọi x dương và: \(\left( {\sqrt x } \right)' = \frac{1}{{2\sqrt x }}.\)
1.2. Đạo hàm của tổng, hiệu, tích, thương
- Định lý 3: Giả sử \(u = u\left( x \right)\) và \(v = v\left( x \right)\) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Ta có:
+ \({\left( {u + v} \right)'} = {u'} + {v'}\)
+ \({\left( {u - v} \right)'} = {u'} - {v'}\)
+ \({\left( {u.v} \right)'} = {u'}.v + u.{v'}\)
+ \(\left ( \frac{u}{v} \right )'=\frac{u'v-uv'}{v^2},(v(x) \ne 0)\)
- Mở rộng:
+ \(({u_1} + {u_2} + ... + {u_n})' = {u_1}' + {u_2}' + ... + {u_n}'.\)
- Hệ quả 1: Nếu k là một hằng số thì: \((ku)'=ku'.\)
- Hệ quả 2: \({\left( {\frac{1}{v}} \right)'} = - \frac{{ - v'}}{{{v^2}}}\) , \((v(x)\ne 0)\)
+ \((u.v.{\rm{w}})' = u'.v.{\rm{w}} + u.v'.{\rm{w}} + u.v.{\rm{w}}'\)
1.3. Đạo hàm với hàm hợp
- Định lý: Cho hàm số \(y=f(u)\) với \(u=u(x)\) thì ta có: \(y'_u=y'_u.u'_x.\)
- Hệ quả:
+ \(({u^n}) = n.{u^{n - 1}}.u',n \in \mathbb{N}^*.\)
+ \(\left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}.\)
Bài tập minh họa
Ví dụ 1:
a) Cho hàm số f(x)=x6. Tính f'(x) và f'(1).
b) Tính đạo hàm của hàm số \(y=\sqrt x\) tại x=9.
Hướng dẫn giải:
a) Ta có: \(f'(x) = 6{x^5},\forall x \in \mathbb{R}\)
Vậy: \(f'(1) = 6.\)
b) Ta có: \(f'(x) = \frac{1}{{2\sqrt x }}\)
Tại x=9 ta có: \(f'(9) = \frac{1}{{2\sqrt 9 }} = \frac{1}{6}.\)
Ví dụ 2:
Tính đạo hàm của các hàm số sau:
a) \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x.\)
b) \(y=(x^2+1)(3-2x^2).\)
c) \(y=(x^2+3)^5.\)
Hướng dẫn giải:
a) \(y' = \left( {\frac{1}{3}{x^3} - 2{x^2} + 3x} \right)' = {x^2} - 4x + 3.\)
b) \(y' = \left[ {({x^2} + 1)(3 - 2{x^2})} \right]' = ({x^2} + 1)'(3 - 2{x^2}) + ({x^2} + 1)(3 - 2{x^2})'\)
\(= 2x(3 - 2{x^2}) - 4x({x^2} + 1) = - 8{x^3} + 2x.\)
c) \(y' = \left[ {{{({x^2} + 3)}^5}} \right]' = 5{({x^2} + 3)^4}({x^2} + 3)' = 10x{({x^2} + 3)^4}.\)
Ví dụ 3:
Tính đạo hàm của các hàm số sau:
a) \(y = \frac{1}{4}x + \frac{1}{x}.\)
b) \(y = \frac{{2x + 1}}{{x + 1}}.\)
c) \(y = \frac{{ - {x^2} + 2x + 3}}{{{x^3} - 2}}.\)
Hướng dẫn giải:
a) \(y' = \left( {\frac{1}{4}x + \frac{1}{x}} \right)' = \left( {\frac{1}{4}x} \right)' + \left( {\frac{1}{x}} \right)' = \frac{1}{4} - \frac{1}{{{x^2}}} = \frac{{{x^2} - 4}}{{4{x^2}}}.\)
b) \(y' = \left( {\frac{{2x + 1}}{{x + 1}}} \right)' = \frac{{(2x + 1)'(x + 1) - (2x + 1)(x + 1)'}}{{{{(x + 1)}^2}}} = \frac{1}{{{{(x + 1)}^2}}}.\)
c) \(y' = \left( {\frac{{ - {x^2} + 2x + 3}}{{{x^3} - 2}}} \right)' = \frac{{( - {x^2} + 2x + 3)'({x^3} - 2) - ( - {x^2} + 2x + 3)({x^3} - 2)'}}{{{{({x^3} - 2)}^2}}}\)
\(= \frac{{\left( { - 2x + 2} \right)({x^3} - 2) - 3{x^2}( - {x^2} + 2x + 3)}}{{{{({x^3} - 2)}^2}}} = \frac{{{x^4} - 4{x^3} - 9{x^2} + 4x - 4}}{{{{({x^3} - 2)}^2}}}.\)
Ví dụ 4:
Tính đạo hàm của các hàm số sau:
a) \(y = \frac{2}{x} + 5\sqrt x .\)
b) \(y = (x - 2)\sqrt {{x^2} + 1}\)
c) \(y = \frac{x}{{\sqrt {{a^2} - {x^2}} }}\) với a là hằng số.
Hướng dẫn giải:
a) \(y' = \left( {\frac{2}{x} + 5\sqrt x } \right)' = \left( {\frac{2}{x}} \right)' + \left( {5\sqrt x } \right)' = - \frac{2}{{{x^2}}} + \frac{5}{{2\sqrt x }} = \frac{{5x\sqrt x - 4}}{{2{x^2}}}.\)
b) \(y = \left[ {(x - 2)\sqrt {{x^2} + 1} } \right]' = (x - 2)'\sqrt {{x^2} + 1} + (x - 2)\left( {\sqrt {{x^2} + 1} } \right)'\)
\(= \sqrt {{x^2} + 1} + \left( {x - 2} \right)\frac{{\left( {{x^2} + 1} \right)'}}{{2\sqrt {{x^2} + 1} }} = \sqrt {{x^2} + 1} + \frac{{x(x - 2)}}{{\sqrt {{x^2} + 1} }} = \frac{{2{x^2} - 2x + 1}}{{\sqrt {{x^2} + 1} }}.\)
c) \(y' = \left( {\frac{x}{{\sqrt {{a^2} - {x^2}} }}} \right)' = \frac{{\left( x \right)'\sqrt {{a^2} - {x^2}} - x\left( {\sqrt {{a^2} - {x^2}} } \right)'}}{{{{\left( {\sqrt {{a^2} - {x^2}} } \right)}^2}}}\)
\(= \frac{{\sqrt {{a^2} - {x^2}} - x.\frac{{\left( {{a^2} - {x^2}} \right)'}}{{2\sqrt {{a^2} - {x^2}} }}}}{{{{\left( {\sqrt {{a^2} - {x^2}} } \right)}^2}}} = \frac{{\sqrt {{a^2} - {x^2}} + \frac{{{x^2}}}{{\sqrt {{a^2} - {x^2}} }}}}{{{{\left( {\sqrt {{a^2} - {x^2}} } \right)}^2}}}\)
\(= \frac{{{a^2}}}{{\left( {{a^2} - {x^2}} \right)\sqrt {{a^2} - {x^2}} }}.\)
3. Luyện tập Bài 2 chương 5 giải tích 11
Bài 2 Quy tắc tính đạo hàm sẽ giới thiệu đến các em công thức tính đạo hàm của các hàm số thường gặp và hàm hợp của chúng, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em hình thành và rèn luyện kĩ năng tính đạo hàm.
3.1 Trắc nghiệm về Quy tắc tính đạo hàm
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Đạo hàm của hàm số \(y = \frac{3}{x} + \frac{2}{{{x^2}}} - \frac{7}{{{x^3}}} + \frac{6}{{{x^5}}}\) bằng biểu thức nào dưới đây?
- A. \(\frac{3}{{{x^2}}} + \frac{2}{{{x^4}}} - \frac{7}{{{x^6}}} + \frac{6}{{{x^{10}}}}\)
- B. \( - \frac{3}{{{x^2}}} - \frac{2}{{{x^4}}} + \frac{7}{{{x^6}}} - \frac{6}{{{x^{10}}}}\)
- C. \( - \frac{3}{{{x^2}}} - \frac{4}{{{x^3}}} + \frac{{21}}{{{x^4}}} - \frac{{30}}{{{x^6}}}\)
- D. \(3 + \frac{1}{x} - \frac{7}{{3{x^2}}} + \frac{6}{{5{x^4}}}\)
-
Câu 2:
Đạo hàm của hàm số \(y = \left( {5 - 3x} \right)\left( {\frac{1}{3}{x^3} + \frac{1}{2}{x^2} - 4} \right)\) bằng biểu thức nào dưới đây?
- A. -3+x2+x
- B. -3(x2+x)
- C. -3-x2-x
- D. \( - 4{x^3} + \frac{1}{2}{x^2} + 5x + 12\)
-
Câu 3:
Đạo hàm của hàm số \(y = \frac{{5 - 2x - 3{x^2}}}{{3x - 2}}\) bằng biểu thức nào dưới đây?
- A. \(\frac{{ - 2 - 6x}}{{{{\left( {3x - 2} \right)}^2}}}\)
- B. \(\frac{{ - 2 - 6x}}{3}\)
- C. \(\frac{{ - 9{x^2} + 12x - 11}}{{{{\left( {3x - 2} \right)}^2}}}\)
- D. \(\frac{{ - 5 - 6x}}{{{{\left( {3x - 2} \right)}^2}}}\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2 Bài tập SGK và Nâng Cao về Quy tắc tính đạo hàm
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 1 trang 162 SGK Đại số & Giải tích 11
Bài tập 2 trang 162 SGK Đại số & Giải tích 11
Bài tập 3 trang 163 SGK Đại số & Giải tích 11
Bài tập 4 trang 163 SGK Đại số & Giải tích 11
Bài tập 5 trang 163 SGK Đại số & Giải tích 11
Bài tập 5.12 trang 202 SBT Toán 11
Bài tập 5.13 trang 202 SBT Toán 11
Bài tập 5.14 trang 202 SBT Toán 11
Bài tập 5.15 trang 202 SBT Toán 11
Bài tập 5.16 trang 202 SBT Toán 11
Bài tập 5.17 trang 202 SBT Toán 11
Bài tập 5.18 trang 202 SBT Toán 11
Bài tập 5.19 trang 202 SBT Toán 11
Bài tập 5.20 trang 202 SBT Toán 11
Bài tập 5.21 trang 203 SBT Toán 11
Bài tập 5.22 trang 203 SBT Toán 11
Bài tập 5.23 trang 203 SBT Toán 11
Bài tập 5.24 trang 203 SBT Toán 11
Bài tập 5.25 trang 203 SBT Toán 11
Bài tập 5.26 trang 203 SBT Toán 11
Bài tập 5.27 trang 203 SBT Toán 11
Bài tập 5.28 trang 203 SBT Toán 11
Bài tập 5.29 trang 203 SBT Toán 11
Bài tập 5.30 trang 203 SBT Toán 11
Bài tập 5.31 trang 204 SBT Toán 11
Bài tập 5.32 trang 204 SBT Toán 11
Bài tập 5.33 trang 204 SBT Toán 11
Bài tập 5.34 trang 204 SBT Toán 11
Bài tập 5.35 trang 204 SBT Toán 11
Bài tập 5.36 trang 204 SBT Toán 11
Bài tập 5.37 trang 205 SBT Toán 11
Bài tập 5.38 trang 205 SBT Toán 11
Bài tập 5.39 trang 205 SBT Toán 11
Bài tập 16 trang 204 SGK Toán 11 NC
Bài tập 17 trang 204 SGK Toán 11 NC
Bài tập 18 trang 204 SGK Toán 11 NC
Bài tập 19 trang 204 SGK Toán 11 NC
Bài tập 20 trang 204 SGK Toán 11 NC
Bài tập 21 trang 204 SGK Toán 11 NC
Bài tập 22 trang 205 SGK Toán 11 NC
Bài tập 23 trang 205 SGK Toán 11 NC
Bài tập 24 trang 205 SGK Toán 11 NC
Bài tập 25 trang 205 SGK Toán 11 NC
4. Hỏi đáp về bài 2 chương 5 giải tích 11
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 11 HỌC247
NONE Bài học cùng chương
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi HK2 lớp 12
Đề thi giữa HK1 lớp 11
Đề thi giữa HK2 lớp 11
Đề thi HK1 lớp 11
Tôi yêu em - Pu-Skin
Đề cương HK1 lớp 11
Video bồi dưỡng HSG môn Toán
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Chí Phèo
Cấp số cộng
Cấp số nhân
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » đạo Hàm 11 Bài 2 Bài Tập
-
Giải Toán 11 Bài 2: Quy Tắc Tính đạo Hàm
-
Quy Tắc Tính đạo Hàm - Toán 11
-
Giải Bài 2: Quy Tắc Tính đạo Hàm | Đại Số Và Giải Tích 11 Trang 157
-
Giải Toán Lớp 11 Bài 1, 2, 3, 4, 5 Trang 162, 163 SGK Đại Số - Quy Tắc
-
SGK Đại Số Và Giải Tích 11 - Bài 2. Quy Tắc Tính đạo Hàm
-
Giải Bài Tập Toán 11 Bài 2. Quy Tắc Tính đạo Hàm
-
Giải Toán 11: Bài 2. Quy Tắc Tính đạo Hàm - Top Lời Giải
-
Sách Giải Bài Tập Toán Lớp 11 Bài 2: Quy Tắc Tính Đạo Hàm
-
Giải Bài Tập Toán 11 Bài 2: Quy Tắc Tính đạo Hàm
-
Giải Bài Tập SGK Toán 11 Bài 2: Quy Tắc Tính đạo Hàm
-
Giải Toán 11 Bài 2: Các Quy Tắc Tính đạo Hàm - MarvelVietnam
-
Giải Toán 11 Bài 2: Các Quy Tắc Tính đạo Hàm - VOH
-
Giải Bài Tập SBT Toán 11 Bài 2: Các Quy Tắc Tính đạo Hàm
-
Toán 11 Bài 2: Quy Tắc Tính đạo Hàm Trang 162, 163 - Haylamdo