Toán 11 Bài 3 :Cấp Số Cộng - HOC247
Có thể bạn quan tâm
Cấp số cộng là một dãy số có tính chất đặc biệt. Bài giảng này sẽ cung cấp cho các em khái niệm cấp số cộng và các dạng toán liên quan, cùng với những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng làm chủ nội dung phần này.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Định nghĩa
1.2. Các tính chất
2. Bài tập minh hoạ
3. Luyện tập bài 3 chương 3 giải tích 11
3.1. Trắc nghiệm về cấp số cộng
3.2. Bài tập SGK & Nâng cao về cấp số cộng
4. Hỏi đáp về bài 3 chương 3 giải tích 11
Tóm tắt lý thuyết
1.1. Định nghĩa
- Dãy số (un) được xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = a}\\{{u_{n + 1}} = {u_n} + d}\end{array}} \right.,{\rm{ }}n \in {N^*}\) gọi là cấp số cộng; \(d\) gọi là công sai.
1.2. Các tính chất
- Số hạng thứ n được cho bởi công thức: \({u_n} = {u_1} + (n - 1)d\).
- Ba số hạng \({u_k},{u_{k + 1}},{u_{k + 2}}\) là ba số hạng liên tiếp của cấp số cộng khi và chỉ khi \({u_{k + 1}} = \frac{1}{2}\left( {{u_k} + {u_{k + 2}}} \right)\).
- Tổng \(n\) số hạng đầu tiên \({S_n}\) được xác định bởi công thức :
\({S_n} = {u_1} + {u_2} + ... + {u_n} = \frac{n}{2}\left( {{u_1} + {u_n}} \right) = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right]\).
Bài tập minh họa
Vấn đề 1: Xác định cấp số cộng và xác yếu tố của cấp số cộng
- Phương pháp:
+ Dãy số \(({u_n})\) là một cấp số cộng \( \Leftrightarrow {u_{n + 1}} - {u_n} = d\) không phụ thuộc vào n và \(d\) là công sai.
+ Ba số \(a,b,c\) theo thứ tự đó lập thành cấp số cộng \( \Leftrightarrow a + c = 2b\).
+ Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết của bài toán qua \({u_1}\) và \(d\).
Ví dụ 1:
Cho CSC \(({u_n})\) thỏa : \(\left\{ {\begin{array}{*{20}{c}}{{u_2} - {u_3} + {u_5} = 10}\\{{u_4} + {u_6} = 26}\end{array}} \right.\)
a) Xác định công sai.
b) Công thức tổng quát của cấp số cộng.
c) Tính \(S = {u_1} + {u_4} + {u_7} + ... + {u_{2011}}\).
Hướng dẫn:
Gọi \(d\) là công sai của CSC, ta có:
\(\left\{ \begin{array}{l}({u_1} + d) - ({u_1} + 2d) + ({u_1} + 4d) = 10\\({u_1} + 3d) + ({u_1} + 5d) = 26\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\{u_1} + 4d = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 3\end{array} \right.\)
Ta có công sai \(d = 3\) và số hạng tổng quát : \({u_n} = {u_1} + (n - 1)d = 3n - 2\).
Ta có các số hạng \({u_1},{u_4},{u_7},...,{u_{2011}}\) lập thành một CSC gồm 670 số hạng với công sai \(d' = 3d\), nên ta có: \(S = \frac{{670}}{2}\left( {2{u_1} + 669d'} \right) = 673015\)
Ví dụ 2:
Cho cấp số cộng \(({u_n})\) thỏa: \(\left\{ \begin{array}{l}{u_5} + 3{u_3} - {u_2} = - 21\\3{u_7} - 2{u_4} = - 34\end{array} \right.\).
a) Tính số hạng thứ 100 của cấp số cộng.
b) Tính tổng 15 số hạng đầu của cấp số cộng.
c) Tính \(S = {u_4} + {u_5} + ... + {u_{30}}\).
Hướng dẫn:
Từ giả thiết bài toán, ta có: \(\left\{ \begin{array}{l}{u_1} + 4d + 3({u_1} + 2d) - ({u_1} + d) = - 21\\3({u_1} + 6d) - 2({u_1} + 3d) = - 34\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = - 7\\{u_1} + 12d = - 34\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\d = - 3\end{array} \right.\).
a) Số hạng thứ 100 của cấp số: \({u_{100}} = {u_1} + 99d = - 295\)
b) Tổng của 15 số hạng đầu: \({S_{15}} = \frac{{15}}{2}\left[ {2{u_1} + 14d} \right] = - 285\)
c) \(S = {S_{30}} - {S_3} = 15\left( {2{u_1} + 29d} \right) - \frac{3}{2}\left( {2{u_1} + 2d} \right) = - 1242\).
Vấn đề 2: Chứng minh tính chất của cấp số cộng
- Phương pháp:
+ Sử dụng công thức tổng quát của cấp số, chuyển các đại lượng qua số hạng đầu và công sai, công bội.
+ Sử dụng tính chất của cấp số cộng: \(a,b,c\) theo thứ tự đó lập thành CSC \( \Leftrightarrow a + c = 2b\)
Ví dụ 3:
Chứng minh rằng các số: \(1,\sqrt 3 ,3\) không thể cùng thuộc một CSC
Hướng dẫn:
Giả sử \(1,\sqrt 3 ,3\) là số hạng thứ \(m,n,p\) của một CSC \(({u_n})\).
Ta có:
\(\sqrt 3 = \frac{{3 - \sqrt 3 }}{{\sqrt 3 - 1}} = \frac{{{u_p} - {u_n}}}{{{u_n} - {u_m}}} = \frac{{{u_1}(p - n)}}{{{u_1}(n - m)}} = \frac{{p - n}}{{n - m}}\) vô lí vì \(\sqrt 3 \) là số vô tỉ, còn \(\frac{{p - n}}{{n - m}}\) là số hữu tỉ.
Vấn đề 3: Tìm điều kiện để dãy số lập thành cấp số cộng
Phương pháp: \(a,b,c\) theo thứ tự đó lập thành CSC \( \Leftrightarrow a + c = 2b\)
Ví dụ 4:
Tìm \(x\) biết : \({x^2} + 1,x - 2,1 - 3x\) lập thành cấp số cộng.
Hướng dẫn:
Ta có: \({x^2} + 1,x - 2,1 - 3x\) lập thành cấp số cộng \( \Leftrightarrow {x^2} + 1 + 1 - 3x = 2(x - 2) \Leftrightarrow {x^2} - 5x + 6 = 0 \Leftrightarrow x = 2\,;\,x = 3\)
Vậy \(x = 2,x = 3\) là những giá trị cần tìm.
Ví dụ 5:
Xác định m để phương trình \({x^3} - 3{x^2} - 9x + m = 0\) có ba nghiệm phân biệt lập thành cấp số cộng.
Hướng dẫn:
Giải sử phương trình có ba nghiệm phân biệt lập thành cấp số cộng.
Khi đó:\({x_1} + {x_3} = 2{x_2},{x_1} + {x_2} + {x_3} = 3 \Rightarrow {x_2} = 1\)
Thay vào phương trình ta có: \(m = 11\).
Với \(m = 11\) ta có phương trình :\({x^3} - 3{x^2} - 9x + 11 = 0\)
\( \Leftrightarrow \left( {x - 1} \right)\left( {{x^2} - 2x - 11} \right) = 0 \Leftrightarrow {x_1} = 1 - \sqrt {12} ,{x_2} = 1,{x_3} = 1 + \sqrt {12} \)
Ba nghiệm này lập thành CSC.
Vậy \(m = 11\) là giá trị cần tìm.
3. Luyện tập Bài 3 chương 3 giải tích 11
Phương pháp quy nạp toán học là một dạng toán hay nhưng để làm quen các em sẽ gặp không ít khó khăn. Vì vậy trong bài học sẽ làm rõ thế nào là chứng minh quy nạp toán học? Việc vận dụng phương pháp pháp quy nạp vào giải toán sẽ được thực hiện như thế nào?
3.1 Trắc nghiệm về cấp số cộng
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Tìm bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng \(20\) và tổng các bình phương của chúng bằng \(120^0\).
- A. \(1,5,6,8\)
- B. \(2,4,6,8\)
- C. \(1,4,6,9\)
- D. \(1,4,7,8\)
-
Câu 2:
Tìm công sai của cấp số cộng (un) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{u_2} - {u_3} + {u_5} = 10}\\{{u_4} + {u_6} = 26}\end{array}} \right.\)
- A. d=3
- B. d=5
- C. d=6
- D. d=4
-
Câu 3:
Tam giác \(ABC\) có ba góc \(A,B,C\) theo thứ tự đó lập thành cấp số cộng và \(C = 5A\). Xác định số đo các góc \(A,B,C\).
- A. \(\left\{ \begin{array}{l}A = {10^0}\\B = {120^0}\\C = {50^0}\end{array} \right.\)
- B. \(\left\{ \begin{array}{l}A = {15^0}\\B = {105^0}\\C = {60^0}\end{array} \right.\)
- C. \(\left\{ \begin{array}{l}A = {5^0}\\B = {60^0}\\C = {25^0}\end{array} \right.\)
- D. \(\left\{ \begin{array}{l}A = {20^0}\\B = {60^0}\\C = {100^0}\end{array} \right.\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2 Bài tập SGK và Nâng Cao về cấp số cộng
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 1 trang 97 SGK Đại số & Giải tích 11
Bài tập 2 trang 97 SGK Đại số & Giải tích 11
Bài tập 3 trang 97 SGK Đại số & Giải tích 11
Bài tập 4 trang 98 SGK Đại số & Giải tích 11
Bài tập 5 trang 98 SGK Đại số & Giải tích 11
Bài tập 3.18 trang 123 SBT Toán 11
Bài tập 3.19 trang 124 SBT Toán 11
Bài tập 3.20 trang 124 SBT Toán 11
Bài tập 3.21 trang 124 SBT Toán 11
Bài tập 3.22 trang 124 SBT Toán 11
Bài tập 3.23 trang 124 SBT Toán 11
Bài tập 3.24 trang 124 SBT Toán 11
Bài tập 3.25 trang 124 SBT Toán 11
Bài tập 3.26 trang 124 SBT Toán 11
Bài tập 19 trang 114 SGK Toán 11 NC
Bài tập 20 trang 114 SGK Toán 11 NC
Bài tập 21 trang 114 SGK Toán 11 NC
Bài tập 22 trang 115 SGK Toán 11 NC
Bài tập 23 trang 115 SGK Toán 11 NC
Bài tập 24 trang 115 SGK Toán 11 NC
Bài tập 25 trang 115 SGK Toán 11 NC
Bài tập 26 trang 115 SGK Toán 11 NC
Bài tập 27 trang 115 SGK Toán 11 NC
Bài tập 28 trang 116 SGK Toán 11 NC
4. Hỏi đáp về bài 3 chương 3 giải tích 11
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 11 HỌC247
NONE Bài học cùng chương
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi HK1 lớp 11
Đề thi HK2 lớp 12
Đề thi giữa HK1 lớp 11
Đề thi giữa HK2 lớp 11
Video bồi dưỡng HSG môn Toán
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Vội vàng
Lưu biệt khi xuất dương
Hầu trời- Tản Đà
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
Cấp số cộng
Giới hạn của dãy số
Giới hạn của dãy số
Cấp số nhân
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » định Nghĩa Cấp Số Cộng Lớp 11
-
Định Nghĩa, Tính Chất Và Một Số Dạng Toán Của Cấp Số Cộng - VOH
-
Lý Thuyết Cấp Số Cộng | SGK Toán Lớp 11
-
Cấp Số Cộng - Đại Số Và Giải Tích Toán Lớp 11
-
Cấp Số Cộng Là Gì? 5 Công Thức Cấp Số Cộng Và Bài Tập
-
Lý Thuyết Cấp Số Cộng Hay, Chi Tiết Nhất - Toán Lớp 11
-
Định Nghĩa Và Tính Chất Của Cấp Số Cộng - Trường Quốc Học
-
Lý Thuyết Cấp Số Cộng | SGK Toán Lớp 11
-
Sử Dụng định Nghĩa Cấp Số Cộng
-
Lý Thuyết, Công Thức Cấp Số Cộng Chi Tiết, Dễ Nhớ - Boxthuthuat
-
Toán 11 Bài 3 - I. Cấp Số Cộng - KhoiA.Vn
-
Công Thức Cấp Số Cộng - Trường THPT Thành Phố Sóc Trăng
-
SGK Đại Số Và Giải Tích 11 - Bài 3. Cấp Số Cộng
-
Tổng Hợp Lý Thuyết Chương 3: Dãy Số - Cấp Số Cộng Và ... - Haylamdo
-
Công Thức Giải Nhanh Cấp Số Cộng Và Cấp Số Nhân - Tăng Giáp