Toán 11 Bài 3: Đạo Hàm Của Hàm Số Lượng Giác - Hoc247
Có thể bạn quan tâm
Ở bài 2, các em đã được học quy tắc tính đạo hàm của một số hàm số thường gặp. Bài 3 Đạo hàm của hàm số lượng giác sẽ tiếp tục giới thiệu đến các em công thức tính đạo hàm của các hàm số lượng giác sin, cos, tan, cot. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em hình thành và rèn luyện kĩ năng tính đạo hàm của các hàm số lượng giác.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Đạo hàm của hàm số y = sinx
1.2. Đạo hàm của hàm số y = cosx
1.3. Đạo hàm của hàm số y = tanx
1.4. Đạo hàm của hàm số y = cotx
2. Bài tập minh hoạ
3. Luyện tập bài 3 chương 5 giải tích 11
3.1. Trắc nghiệm về Đạo hàm của hàm số lượng giác
3.2. Bài tập SGK & Nâng cao về Đạo hàm của hàm số lượng giác
4. Hỏi đáp về bài 3 chương 5 giải tích 11
Tóm tắt lý thuyết
1.1. Đạo hàm của hàm số y = sinx
- Hàm số \(y=sin x\) có đạo hàm tại mọi \(x \in \mathbb{R}\) và \(\left( {\sin x} \right)' = \cos x.\)
- Nếu \(y=sin u\) và \(u=u(x)\) thì \((sin u)'=u'. \cos u.\)
1.2. Đạo hàm của hàm số y = cosx
- Hàm số \(y=\cos x\) có đạo hàm tại mọi \(x \in \mathbb{R}\) và \(\left( {\cos x} \right)' =-\sin x.\)
- Nếu \(y=\cos u\) và \(u=u(x)\) thì \((cos u)'=-u'. \sin u.\)
1.3. Đạo hàm của hàm số y = tanx
- Hàm số \(y=\tan x\) có đạo hàm tại mọi \(x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{R}\) và \(\left( {\tan x} \right)' = \frac{1}{{{{\cos }^2}x}}.\)
- Nếu \(y=tan u\) và \(u=u(x)\) thì \(\left( {\tan u} \right)' = \frac{{u'}}{{{{\cos }^2}u}}.\)
1.4. Đạo hàm của hàm số y = cotx
- Hàm số \(y=\cot x\) có đạo hàm tại mọi \(x \ne k\pi ,k \in \mathbb{R}\) và \(\left( {\cot x} \right)' = - \frac{1}{{{{\sin }^2}x}}.\)
- Nếu \(y=\cot u\) và \(u=u(x)\) thì \(\left( {\cot x} \right)' = - \frac{{u'}}{{{{\sin }^2}u}}\).
Bài tập minh họa
Ví dụ 1:
Tìm đạo hàm của các hàm số sau:
a) \(y = \sin \left( {\frac{\pi }{2} - x} \right).\)
b) \(y = \sin \sqrt {x + 10} .\)
c) \(y = \sin \left( {\frac{1}{{x - 2}}} \right).\)
Hướng dẫn giải:
a) \(y = \sin \left( {\frac{\pi }{2} - x} \right)\)\(\Rightarrow y' = \left( {\frac{\pi }{2} - x} \right)'.\cos \left( {\frac{\pi }{2} - x} \right)\)\(= - \cos \left( {\frac{\pi }{2} - x} \right).\)
b) \(y = \sin \sqrt {x + 10}\)\(\Rightarrow y' = \left( {\sqrt {x + 10} } \right)'.\cos \sqrt {x + 10}\)\(= \frac{1}{{2\sqrt {x + 10} }}.\cos \sqrt {x + 10} .\)
c) \(y = \sin \left( {\frac{1}{{x - 2}}} \right)\)\(\Rightarrow y' = \left( {\frac{1}{{x - 2}}} \right)'.\cos \left( {\frac{1}{{x - 2}}} \right)\)\(= \frac{{ - 1}}{{{{\left( {x - 2} \right)}^2}}}.\cos \left( {\frac{1}{{x - 2}}} \right).\)
Ví dụ 2:
Tìm đạo hàm của các hàm số sau:
a) \(y = \cos \left( {{x^3} - x} \right).\)
b) \(y = \cos \sqrt {{x^2} - 8} .\)
c) \(y = \cos \left( {\frac{x}{{x + 4}}} \right).\)
Hướng dẫn giải:
a) \(y = \cos \left( {{x^3} - x} \right)\)\(\Rightarrow y' = - \left( {{x^3} - x} \right)'.\sin \left( {{x^3} - x} \right)\)\(= - \left( {3{x^3} - 1} \right).\sin \left( {{x^3} - x} \right).\)
b) \(y = \cos \sqrt {{x^2} - 8}\)\(\Rightarrow y' = - \left( {\sqrt {{x^2} - 8} } \right)'.\sin \sqrt {x + 10}\)\(= \frac{x}{{\sqrt {{x^2} - 8} }}.\sin \sqrt {{x^2} - 8} .\)
c) \(y = \cos \left( {\frac{x}{{x + 4}}} \right)\)\(\Rightarrow y' = \left( {\frac{x}{{x + 4}}} \right)'.\sin \left( {\frac{1}{{x - 2}}} \right)\)\(= \frac{4}{{{{\left( {x + 4} \right)}^2}}}.\sin \left( {\frac{x}{{x + 4}}} \right).\)
Ví dụ 3:
Tính đạo hàm của các hàm số sau:
a) \(y = \tan \left( {{x^5} - 5x} \right)\).
b) \(y = \tan \sqrt {{x^4} + 1}\).
Hướng dẫn giải:
a) \(y = \tan \left( {{x^5} - 5x} \right)\) \(\Rightarrow y' = \frac{{({x^5} - 5x)'}}{{{{\cos }^2}\left( {{x^5} - 5x} \right)}} = \frac{{5{x^4} - 5}}{{{{\cos }^2}\left( {{x^5} - 5x} \right)}}\).
b) \(y = \tan \sqrt {{x^4} + 1}\)\(\Rightarrow y' = \frac{{\left( {\sqrt {{x^4} + 1} } \right)}}{{{{\cos }^2}\left( {\sqrt {{x^4} + 1} } \right)}} = \frac{{2{x^3}}}{{\sqrt {{x^4} + 1} .{{\cos }^2}\left( {\sqrt {{x^4} + 1} } \right)}}\).
Ví dụ 4:
Tính đạo hàm của các hàm số sau:
a) \(y = \cot \left( {7{x^3} - 6x} \right)\).
b) \(y = {\cot ^4}\left( {5x + 1} \right)\).
Hướng dẫn giải:
a) \(y = \cot \left( {7{x^3} - 6x} \right)\) \(\Rightarrow y' = \frac{{(7{x^3} - 6x)'}}{{{{\sin }^2}\left( {7{x^3} - 6x} \right)}} = - \frac{{21{x^2} - 6}}{{{{\sin }^2}\left( {7{x^3} - 6x} \right)}}\).
b) \(y = {\cot ^4}\left( {5x + 1} \right)\)\(\Rightarrow y' = 4{\cot ^3}\left( {5x + 1} \right).\left[ {\cot \left( {5x + 1} \right)} \right]'\)
\(= 4{\cot ^3}\left( {5x + 1} \right).\left( {\frac{{ - 5}}{{{{\sin }^2}\left( {5x + 1} \right)}}} \right)\)\(= \frac{{ - 20{{\cot }^3}\left( {5x + 1} \right)}}{{{{\sin }^2}\left( {5x + 1} \right)}}\).
3. Luyện tập Bài 3 chương 5 giải tích 11
Bài 3 Đạo hàm của hàm số lượng giác sẽ tiếp tục giới thiệu đến các em công thức tính đạo hàm của các hàm số lượng giác sin, cos, tan, cot. Bên cạnh đó là những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em hình thành và rèn luyện kĩ năng tính đạo hàm của các hàm số lượng giác.
3.1 Trắc nghiệm về Đạo hàm của hàm số lượng giác
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Đạo hàm của hàm số \(y = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\) bằng biểu thức nào sau đây?
- A. \(\frac{{\cos x + \sin x}}{{\sin x - \cos x}}\)
- B. \(\frac{{ - 1}}{{{{\cos }^2}\left( {x + \frac{\pi }{4}} \right)}}\)
- C. \(\frac{{ 1}}{{{{\cos }^2}\left( {x + \frac{\pi }{4}} \right)}}\)
- D. \( - \frac{{2\sin x}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\)
-
Câu 2:
Đạo hàm của hàm số \(y = \sqrt {{{\sin }^3}\left( {2x + 1} \right)} \) bằng biểu thức nào sau đây?
- A. \(\frac{{3{{\sin }^2}\left( {2x + 1} \right)}}{{2\sqrt {{{\sin }^3}\left( {2x + 1} \right)} }}\)
- B. \(3\sqrt {\sin \left( {2x + 1} \right)} .c{\rm{os}}\left( {2x + 1} \right)\)
- C. \(\frac{{3{{\sin }^2}2\left( {2x + 1} \right)}}{{2\sqrt {{{\sin }^3}\left( {2x + 1} \right)} }}\)
- D. \(3\sqrt {\sin \left( {2x + 1} \right)} \)
-
Câu 3:
Đạo hàm của hàm số \(y = {\cos ^5}\frac{{x + 1}}{{x - 2}}\) bằng biểu thức nào sau đây?
- A. \(\frac{{15}}{{{{\left( {x - 2} \right)}^2}}}{\cos ^4}\frac{{x + 1}}{{x - 2}}\sin \frac{{x + 1}}{{x - 2}}\)
- B. \(- 5{\cos ^4}\frac{{x + 1}}{{x - 2}}\sin \frac{{x + 1}}{{x - 2}}\)
- C. \( 5{\cos ^4}\frac{{x + 1}}{{x - 2}}\sin \frac{{x + 1}}{{x - 2}}\)
- D. \(\frac{{-15}}{{{{\left( {x - 2} \right)}^2}}}{\cos ^4}\frac{{x + 1}}{{x - 2}}\sin \frac{{x + 1}}{{x - 2}}\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2 Bài tập SGK và Nâng Cao về Đạo hàm của hàm số lượng giác
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 1 trang 168 SGK Đại số & Giải tích 11
Bài tập 2 trang 168 SGK Đại số & Giải tích 11
Bài tập 3 trang 169 SGK Đại số & Giải tích 11
Bài tập 4 trang 169 SGK Đại số & Giải tích 11
Bài tập 5 trang 169 SGK Đại số & Giải tích 11
Bài tập 6 trang 169 SGK Đại số & Giải tích 11
Bài tập 7 trang 169 SGK Đại số & Giải tích 11
Bài tập 8 trang 169 SGK Đại số & Giải tích 11
Bài tập 5.40 trang 207 SBT Toán 11
Bài tập 5.41 trang 207 SBT Toán 11
Bài tập 5.42 trang 207 SBT Toán 11
Bài tập 5.43 trang 207 SBT Toán 11
Bài tập 5.44 trang 207 SBT Toán 11
Bài tập 5.45 trang 207 SBT Toán 11
Bài tập 5.46 trang 207 SBT Toán 11
Bài tập 5.47 trang 207 SBT Toán 11
Bài tập 5.48 trang 208 SBT Toán 11
Bài tập 5.49 trang 208 SBT Toán 11
Bài tập 5.50 trang 208 SBT Toán 11
Bài tập 5.51 trang 208 SBT Toán 11
Bài tập 5.52 trang 208 SBT Toán 11
Bài tập 5.53 trang 208 SBT Toán 11
Bài tập 5.54 trang 208 SBT Toán 11
Bài tập 5.55 trang 208 SBT Toán 11
Bài tập 5.56 trang 208 SBT Toán 11
Bài tập 5.57 trang 208 SBT Toán 11
Bài tập 5.58 trang 208 SBT Toán 11
Bài tập 5.59 trang 208 SBT Toán 11
Bài tập 5.60 trang 208 SBT Toán 11
Bài tập 5.61 trang 209 SBT Toán 11
Bài tập 5.62 trang 209 SBT Toán 11
Bài tập 5.63 trang 209 SBT Toán 11
Bài tập 5.64 trang 209 SBT Toán 11
Bài tập 5.65 trang 209 SBT Toán 11
Bài tập 5.66 trang 209 SBT Toán 11
Bài tập 5.67 trang 209 SBT Toán 11
Bài tập 5.68 trang 209 SBT Toán 11
Bài tập 5.69 trang 209 SBT Toán 11
Bài tập 5.70 trang 209 SBT Toán 11
Bài tập 5.71 trang 209 SBT Toán 11
Bài tập 5.72 trang 209 SBT Toán 11
Bài tập 5.73 trang 209 SBT Toán 11
Bài tập 5.74 trang 210 SBT Toán 11
Bài tập 5.75 trang 210 SBT Toán 11
Bài tập 5.76 trang 210 SBT Toán 11
Bài tập 5.77 trang 210 SBT Toán 11
Bài tập 5.78 trang 210 SBT Toán 11
Bài tập 5.79 trang 210 SBT Toán 11
Bài tập 5.80 trang 211 SBT Toán 11
Bài tập 5.81 trang 211 SBT Toán 11
Bài tập 28 trang 211 SGK Toán 11 NC
Bài tập 29 trang 211 SGK Toán 11 NC
Bài tập 30 trang 211 SGK Toán 11 NC
Bài tập 31 trang 212 SGK Toán 11 NC
Bài tập 32 trang 212 SGK Toán 11 NC
Bài tập 33 trang 212 SGK Toán 11 NC
Bài tập 34 trang 212 SGK Toán 11 NC
Bài tập 35 trang 212 SGK Toán 11 NC
Bài tập 36 trang 212 SGK Toán 11 NC
Bài tập 37 trang 212 SGK Toán 11 NC
Bài tập 38 trang 213 SGK Toán 11 NC
4. Hỏi đáp về bài 3 chương 5 giải tích 11
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 11 HỌC247
NONE Bài học cùng chương
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi giữa HK2 lớp 11
Đề thi HK1 lớp 11
Đề thi HK2 lớp 12
Đề thi giữa HK1 lớp 11
Tôi yêu em - Pu-Skin
Đề cương HK1 lớp 11
Video bồi dưỡng HSG môn Toán
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Chí Phèo
Cấp số cộng
Cấp số nhân
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Hàm Số Y = Tanx Có đạo Hàm Là
-
Đạo Hàm Của Hàm Số Y=tan X Là:... - Selfomy Hỏi Đáp
-
Đạo Hàm Cấp Hai Của Hàm Số (y = Tan X ) Bằng:
-
Tính đạo Hàm Của Hàm Số \(y=\tan X\) Trên Tập Xác định Của Nó.
-
Hàm Số Y = Tan X Có đạo Hàm Là: - Trắc Nghiệm Online
-
Cách Tính Đạo Hàm Tanx Và Bài Tập Áp Dụng Đạo ... - Marathon
-
Hàm Số Y=tanx- Cotx Có đạo Hàm Là
-
Hàm Số Y=tan X-cot X Có đạo Hàm Là
-
Hàm Số Y = Tanx – Cotx Có đạo Hàm Là
-
Hàm Số Y=tanx−cotx - Y = Tan X − Cot X - Có đạo Hàm Là
-
Hàm Số Y=tanx−cotx Y = Tan X − Cot X Có đạo Hàm Là
-
Hàm Số Y = Tanx – Cotx Có đạo Hàm Là... - Vietjack.online
-
Hàm Số Y=tanx−cotx Có đạo Hàm Là
-
Bài 3: Đạo Hàm Của Hàm Số Lượng Giác - Tìm đáp án, Giải Bài Tập, để