Toán 11 Bài 4: Cấp Số Nhân - HOC247

YOMEDIA NONE Trang chủ Toán 11 Chương 3: Dãy Số, Cấp Số Cộng Và Cấp Số Nhân Toán 11 Bài 4: Cấp số nhân ADMICRO Lý thuyết10 Trắc nghiệm31 BT SGK 126 FAQ

Cấp số nhân là một dãy số có tính chất đặc biệt. Bài giảng này sẽ cung cấp cho các em khái niệm cấp số nhân và các dạng toán liên quan, cùng với những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng làm chủ nội dung phần này.

ATNETWORK YOMEDIA

1. Tóm tắt lý thuyết

1.1. Định nghĩa

1.2. Các tính chất

2. Bài tập minh hoạ

2.1. Vấn đề 1: Xác định cấp số

2.2. Vấn đề 2: Tìm điều kiện để dãy số lập thành cấp số nhân

3. Luyện tập bài 4 chương 3 giải tích 11

3.1. Trắc nghiệm về cấp số nhân

3.2. Bài tập SGK & Nâng cao về cấp số nhân

4. Hỏi đáp về bài 4 chương 3 giải tích 11

Tóm tắt lý thuyết

1.1. Định nghĩa

- Dãy số (un) được xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = a}\\{{u_{n + 1}} = {u_n}.q}\end{array}} \right.,{\rm{ }}n \in {N^*}\) gọi là cấp số nhân; \(q\) gọi là công bội.

1.2. Các tính chất

- Số hạng thứ n được cho bởi công thức: \({u_n} = {u_1}{q^{n - 1}}\).

- Ba số hạng \({u_k},{u_{k + 1}},{u_{k + 2}}\) là ba số hạng liên tiếp của cấp số nhân khi và chỉ khi \(u_{k + 1}^2 = {u_k}.{u_{k + 2}}\).

- Tổng \(n\) số hạng đầu tiên \({S_n}\) được xác định bởi công thức :

\({S_n} = {u_1} + {u_2} + ... + {u_n} = {u_1}\frac{{1 - {q^n}}}{{1 - q}}\)

Bài tập minh họa

2.1. Vấn đề 1: Xác định cấp số và xác yếu tố của cấp số nhân

- Phương pháp:

+ Dãy số \(({u_n})\) là một cấp số nhân \( \Leftrightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = q\) không phụ thuộc vào n và \(q\) là công bội.

+ Ba số \(a,b,c\) theo thứ tự đó lập thành cấp số nhân \( \Leftrightarrow ac = {b^2}\).

+ Để xác định một cấp số nhân, ta cần xác định số hạng đầu và công bội. Do đó, ta thường biểu diễn giả thiết của bài toán qua \({u_1}\) và \(q\).

Ví dụ 1:

Cho cấp số nhân (un) có các số hạng khác không, tìm \({u_1}\) biết:

a) \(\left\{ {\begin{array}{*{20}{c}}{{u_1} + {u_2} + {u_3} + {u_4} = 15}\\{u_1^2 + u_2^2 + u_3^2 + u_4^2 = 85}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{{u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 11}\\{{u_1} + {u_5} = \frac{{82}}{{11}}}\end{array}} \right.\)

Hướng dẫn:

a) Ta có: \(\left\{ \begin{array}{l}{u_1}(1 + q + {q^2} + {q^3}) = 15\\u_1^2\left( {1 + {q^2} + {q^4} + {q^6}} \right) = 85\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\frac{{{q^4} - 1}}{{q - 1}} = 15\\u_1^2\frac{{{q^8} - 1}}{{{q^2} - 1}} = 85\end{array} \right.\)

\( \Rightarrow {\left( {\frac{{{q^4} - 1}}{{q - 1}}} \right)^2}\left( {\frac{{{q^2} - 1}}{{{q^8} - 1}}} \right) = \frac{{45}}{{17}} \Leftrightarrow \frac{{({q^4} - 1)(q + 1)}}{{(q - 1)({q^4} + 1)}} = \frac{{45}}{{17}} \Leftrightarrow \left[ \begin{array}{l}q = 2\\q = \frac{1}{2}\end{array} \right.\)

Từ đó ta tìm được \({u_1} = 1,{u_1} = 8\).

b) Ta có: \(\left\{ \begin{array}{l}{u_1}\left( {1 + q + {q^2} + {q^3} + {q^4}} \right) = 11\\{u_1}(1 + {q^4}) = \frac{{82}}{{11}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}q(1 + q + {q^2}) = \frac{{39}}{{11}}\\{u_1}(1 + {q^4}) = \frac{{82}}{{11}}\end{array} \right.\)

\( \Rightarrow \frac{{{q^4} + 1}}{{{q^3} + {q^2} + q}} = \frac{{82}}{{39}} \Leftrightarrow q = 3,q = \frac{1}{3}\).

Ví dụ 2:

Cho cấp số nhân \(({u_n})\) thỏa: \(\left\{ \begin{array}{l}{u_4} = \frac{2}{{27}}\\{u_3} = 243{u_8}\end{array} \right.\).

a) Viết năm số hạng đầu của cấp số.

b) Tính tổng 10 số hạng đầu của cấp số.

c) Số \(\frac{2}{{6561}}\) là số hạng thứ bao nhiêu của cấp số?

Hướng dẫn:

Gọi \(q\) là công bội của cấp số. Theo giả thiết ta có:

\(\left\{ \begin{array}{l}{u_1}{q^3} = \frac{2}{{27}}\\{u_1}{q^2} = 243.{u_1}{q^7}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^3} = \frac{2}{{27}}\\{q^5} = \frac{1}{{243}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}q = \frac{1}{3}\\{u_1} = 2\end{array} \right.\)

a) Năm số hạng đầu của cấp số là:\({u_1} = 2,{u_2} = \frac{2}{3},{u_3} = \frac{2}{9};{u_4} = \frac{2}{{27}},{u_5} = \frac{2}{{81}}\).

b) Tổng 10 số hạng đầu của cấp số

\({S_{10}} = {u_1}\frac{{{q^{10}} - 1}}{{q - 1}} = 2.\frac{{{{\left( {\frac{1}{3}} \right)}^{10}} - 1}}{{\frac{1}{3} - 1}} = 3\left[ {1 - {{\left( {\frac{1}{3}} \right)}^{10}}} \right] = \frac{{59048}}{{19683}}\).

c) Ta có: \({u_n} = \frac{2}{{{3^{n - 1}}}} \Rightarrow {u_n} = \frac{2}{{6561}} \Leftrightarrow {3^{n - 1}} = 6561 = {3^8} \Rightarrow n = 9\)

Vậy \(\frac{2}{{6561}}\) là số hạng thứ 9 của cấp số.

2.2. Vấn đề 2: Tìm điều kiện để dãy số lập thành cấp số nhân

- Phương pháp: \(a,b,c\) theo thứ tự đó lập thành CSN \( \Leftrightarrow ac = {b^2}\).

Ví dụ 1: Tìm \(x\) biết \(1,{x^2},6 - {x^2}\) lập thành cấp số nhân.

Hướng dẫn:

Ta có: \(1,{x^2},6 - {x^2}\) lập thành cấp số nhân \( \Leftrightarrow {x^4} = 6 - {x^2} \Leftrightarrow x = \pm \sqrt 2 .\)

Ví dụ 2:

Tìm \(x,y\) biết:

a) Các số \(x + 5y,5x + 2y,8x + y\) lập thành cấp số cộng và các số

\({\left( {y - 1} \right)^2},xy - 1,{\left( {x + 1} \right)^2}\) lập thành cấp số nhân.

b) Các số \(x + 6y,5x + 2y,8x + y\) lập thành cấp số cộng và các số \(x + \frac{5}{3}y,y - 1,2x - 3y\) lập thành cấp số nhân.

Hướng dẫn:

a) Ta có hệ: \(\left\{ \begin{array}{l}x + 5y + 8x + y = 2(5x + 2y)\\{(x + 1)^2}{(y - 1)^2} = {(xy - 1)^2}\end{array} \right.\) giải hệ này ta tìm được

\((x;y) = \left( { - \sqrt 3 ; - \frac{{\sqrt 3 }}{2}} \right);\left( {\sqrt 3 ;\frac{{\sqrt 3 }}{2}} \right)\).

b) Ta có hệ: \(\left\{ \begin{array}{l}x + 6y + 8x + y = 2(5x + 2y)\\(x + \frac{5}{3}y)(2x - 3y) = {(y - 1)^2}\end{array} \right.\) giải hệ này ta tìm được

\((x;y) = \left( { - 3; - 1} \right);\left( {\frac{3}{8};\frac{1}{8}} \right)\).

3. Luyện tập Bài 4 chương 3 giải tích 11

Cấp số nhân là một dãy số có tính chất đặc biệt. Bài giảng này sẽ cung cấp cho các em khái niệm cấp số nhân và các dạng toán liên quan, cùng với những ví dụ minh họa có hướng dẫn giải chi tiết sẽ giúp các em dễ dàng làm chủ nội dung phần này.

3.1 Trắc nghiệm về cấp số nhân

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Chương 3 Bài 4 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Dãy số \({u_n} = {4.3^n}\) có phải là cấp số nhân không? Nếu phải hãy xác định số công bội?

    • A. \(q = 3\)
    • B. \(q = 2\)
    • C. \(q = 4\)
    • D. \(q = \emptyset \)
  • Câu 2:

    Dãy số \({u_n} = 3n - 1\) có phải là cấp số nhân không? Nếu phải hãy xác định số công bội?

    • A. \(q = 3\)
    • B. \(q = 2\)
    • C. \(q = 4\)
    • D. \(q = \emptyset \)
  • Câu 3:

    Cho cấp số nhân có 7 số hạng, số hạng thứ tư bằng 6 và số hạng thứ 7 gấp 243 lần số hạng thứ hai. Hãy tìm số hạng còn lại của CSN đó.

    • A. \({u_1} = \frac{2}{9};{u_2} = \frac{2}{5};{u_3} = 2;{u_5} = 18;{u_6} = 54;{u_7} = 162\)
    • B. \({u_1} = \frac{2}{7};{u_2} = \frac{2}{3};{u_3} = 2;{u_5} = 18;{u_6} = 54;{u_7} = 162\)
    • C. \({u_1} = \frac{2}{9};{u_2} = \frac{2}{3};{u_3} = 2;{u_5} = 21;{u_6} = 54;{u_7} = 162\)
    • D. \({u_1} = \frac{2}{9};{u_2} = \frac{2}{3};{u_3} = 2;{u_5} = 18;{u_6} = 54;{u_7} = 162\)

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2 Bài tập SGK và Nâng Cao về cấp số nhân

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Chương 3 Bài 4 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.

Bài tập 1 trang 103 SGK Đại số & Giải tích 11

Bài tập 2 trang 103 SGK Đại số & Giải tích 11

Bài tập 3 trang 103 SGK Đại số & Giải tích 11

Bài tập 4 trang 104 SGK Đại số & Giải tích 11

Bài tập 5 trang 104 SGK Đại số & Giải tích 11

Bài tập 6 trang 104 SGK Đại số & Giải tích 11

Bài tập 3.27 trang 131 SBT Toán 11

Bài tập 3.28 trang 131 SBT Toán 11

Bài tập 3.29 trang 131 SBT Toán 11

Bài tập 3.30 trang 131 SBT Toán 11

Bài tập 3.31 trang 131 SBT Toán 11

Bài tập 3.32 trang 131 SBT Toán 11

Bài tập 3.33 trang 131 SBT Toán 11

Bài tập 3.34 trang 132 SBT Toán 11

Bài tập 3.35 trang 132 SBT Toán 11

Bài tập 3.36 trang 132 SBT Toán 11

Bài tập 29 trang 120 SGK Toán 11 NC

Bài tập 30 trang 120 SGK Toán 11 NC

Bài tập 31 trang 121 SGK Toán 11 NC

Bài tập 32 trang 121 SGK Toán 11 NC

Bài tập 33 trang 121 SGK Toán 11 NC

Bài tập 34 trang 121 SGK Toán 11 NC

Bài tập 35 trang 121 SGK Toán 11 NC

Bài tập 36 trang 121 SGK Toán 11 NC

Bài tập 37 trang 121 SGK Toán 11 NC

Bài tập 38 trang 121 SGK Toán 11 NC

Bài tập 39 trang 122 SGK Toán 11 NC

Bài tập 40 trang 122 SGK Toán 11 NC

Bài tập 41 trang 122 SGK Toán 11 NC

Bài tập 42 trang 122 SGK Toán 11 NC

Bài tập 43 trang 122 SGK Toán 11 NC

4. Hỏi đáp về bài 4 chương 3 giải tích 11

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.

-- Mod Toán Học 11 HỌC247

NONE

Bài học cùng chương

Bài 1: Phương pháp quy nạp toán học Toán 11 Bài 1: Phương pháp quy nạp toán học Bài 2: Dãy số Toán 11 Bài 2: Dãy số Bài 3 :Cấp số cộng Toán 11 Bài 3 :Cấp số cộng Ôn tập chương 3 Dãy số, Cấp số cộng và Cấp số nhân Toán 11 Ôn tập chương 3 Dãy số, Cấp số cộng và Cấp số nhân ADSENSE TRACNGHIEM Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 11

Toán 11

Toán 11 Kết Nối Tri Thức

Toán 11 Chân Trời Sáng Tạo

Toán 11 Cánh Diều

Giải bài tập Toán 11 KNTT

Giải bài tập Toán 11 CTST

Trắc nghiệm Toán 11

Ngữ văn 11

Ngữ Văn 11 Kết Nối Tri Thức

Ngữ Văn 11 Chân Trời Sáng Tạo

Ngữ Văn 11 Cánh Diều

Soạn Văn 11 Kết Nối Tri Thức

Soạn Văn 11 Chân Trời Sáng Tạo

Văn mẫu 11

Tiếng Anh 11

Tiếng Anh 11 Kết Nối Tri Thức

Tiếng Anh 11 Chân Trời Sáng Tạo

Tiếng Anh 11 Cánh Diều

Trắc nghiệm Tiếng Anh 11 KNTT

Trắc nghiệm Tiếng Anh 11 CTST

Tài liệu Tiếng Anh 11

Vật lý 11

Vật lý 11 Kết Nối Tri Thức

Vật Lý 11 Chân Trời Sáng Tạo

Vật lý 11 Cánh Diều

Giải bài tập Vật Lý 11 KNTT

Giải bài tập Vật Lý 11 CTST

Trắc nghiệm Vật Lý 11

Hoá học 11

Hoá học 11 Kết Nối Tri Thức

Hoá học 11 Chân Trời Sáng Tạo

Hoá Học 11 Cánh Diều

Giải bài tập Hoá 11 KNTT

Giải bài tập Hoá 11 CTST

Trắc nghiệm Hoá học 11

Sinh học 11

Sinh học 11 Kết Nối Tri Thức

Sinh Học 11 Chân Trời Sáng Tạo

Sinh Học 11 Cánh Diều

Giải bài tập Sinh học 11 KNTT

Giải bài tập Sinh học 11 CTST

Trắc nghiệm Sinh học 11

Lịch sử 11

Lịch Sử 11 Kết Nối Tri Thức

Lịch Sử 11 Chân Trời Sáng Tạo

Giải bài tập Sử 11 KNTT

Giải bài tập Sử 11 CTST

Trắc nghiệm Lịch Sử 11

Địa lý 11

Địa Lý 11 Kết Nối Tri Thức

Địa Lý 11 Chân Trời Sáng Tạo

Giải bài tập Địa 11 KNTT

Giải bài tập Địa 11 CTST

Trắc nghiệm Địa lý 11

GDKT & PL 11

GDKT & PL 11 Kết Nối Tri Thức

GDKT & PL 11 Chân Trời Sáng Tạo

Giải bài tập KTPL 11 KNTT

Giải bài tập KTPL 11 CTST

Trắc nghiệm GDKT & PL 11

Công nghệ 11

Công nghệ 11 Kết Nối Tri Thức

Công nghệ 11 Cánh Diều

Giải bài tập Công nghệ 11 KNTT

Giải bài tập Công nghệ 11 Cánh Diều

Trắc nghiệm Công nghệ 11

Tin học 11

Tin học 11 Kết Nối Tri Thức

Tin học 11 Cánh Diều

Giải bài tập Tin học 11 KNTT

Giải bài tập Tin học 11 Cánh Diều

Trắc nghiệm Tin học 11

Cộng đồng

Hỏi đáp lớp 11

Tư liệu lớp 11

Xem nhiều nhất tuần

Đề thi giữa HK2 lớp 11

Đề thi HK1 lớp 11

Đề thi HK2 lớp 12

Đề thi giữa HK1 lớp 11

Tôi yêu em - Pu-Skin

Video bồi dưỡng HSG môn Toán

Đề cương HK1 lớp 11

Công nghệ 11 Bài 16: Công nghệ chế tạo phôi

Chí Phèo

Cấp số nhân

Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ

Cấp số cộng

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON tracnghiem.net QC Bỏ qua >>

Từ khóa » Bài Tập Cấp Số Cộng Nhân Lớp 11