Toán 12 Bài 1: Lũy Thừa - Hoc247

YOMEDIA NONE Trang chủ Toán 12 Chương 2: Hàm Số Lũy Thừa Hàm Số Mũ Và Hàm Số Lôgarit Toán 12 Bài 1: Lũy thừa ADMICRO Lý thuyết10 Trắc nghiệm34 BT SGK 217 FAQ

Lũy thừa là một khái niệm quen thuộc đã được học từ lớp 7, đến chương trình giải tích 12 khái niệm lũy thừa được mở rộng và học sinh được tìm hiểu sâu hơn. Nội dung bài học cung cấp đến các em những vấn đề lý thuyết trọng tâm cũng như phương pháp giải bài tập sẽ giúp các em học tập tốt phần này.

ATNETWORK YOMEDIA

1. Video bài giảng

2. Tóm tắt lý thuyết

2.1. Khái niệm lũy thừa

2.2. Các tính chất quan trọng của lũy thừa

2.3. So sánh hai lũy thừa

3. Bài tập minh hoạ

4. Luyện tập Bài 1 Chương 2 Toán 12

4.1. Trắc nghiệm

4.2. Bài tập SGK

5. Hỏi đáp về lũy thừa

Tóm tắt lý thuyết

2.1. Khái niệm lũy thừa

- Cho \(n\) là một số nguyên dương.

+ Với \(a\) là số thực tùy ý, lũy thừa bậc \(n\) của \(a\) là tích của \(n\) thừa số \(a\): \({a^n} = \underbrace {a.a......a}_n\)

+ Với \(a\ne0\):

  • ​\(a^0=1\)
  • ​\(a^{-n}=\frac{1}{a^n}\)

- Trong biểu thức \(a^m\), ta gọi \(a\) là cơ số, số nguyên \(m\) là số mũ.

Chú ý:

- \(0^0\) và \(0^n\) không có nghĩa.

- Lũy thừa với số mũ nguyên có các tihs chất tương tự của lũy thừa với số mũ nguyên dương.

b) Lũy thừa với số mũ hữu tỉ

- Cho \(a\) là số thực dương và số hữu tỉ \(r=\frac{m}{n}\) trong đó \(m\in\mathbb{Z},n\in\mathbb{N},n\geq 2.\) Lũy thừa với số mũ \(r\) là số \(a^r\) xác đinh bởi: \({a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\).

c) Lũy thừa với số mũ thực

- Cho \(a\) là một số dương, \(\alpha\) là một số vô tỉ:

- Ta gọi giới hạn của dãy số \(\left( {{a^{{r_n}}}} \right)\) là lũy thừa của \(a\) với số mũ \(\alpha\), kí hiệu là \(a^{\alpha}.\)

\({a^\alpha } = \mathop {\lim }\limits_{n \to + \infty } {a^{{r_n}}}\) với \(a = \mathop {\lim }\limits_{n \to + \infty } {r_n}\).

2.2. Các tính chất quan trọng của lũy thừa

- Với số thực \(a>0\) ta có các tính chất sau:

+ \(a^x.a^y=a^{x+y} \ \ \ x, y\in \mathbb{R}\)

+ \(\frac{a^x}{a^y}=a^{x-y} \ \ \ x, y \in \mathbb{R}\)

+ \((a^x)^y=a^{xy} \ \ \ x,y\in R\)

+ \(\sqrt[x]{a^y}=a^{\frac{y}{x}} \ \ \ x\in N, x\geq 2, y\in R\)

+ \((a.b)^x=a^x.b^x\)

+ \(\left ( \frac{a}{b} \right )^y=\frac{a^y}{b^y}\)

2.3. So sánh hai lũy thừa

- Cho số thực \(a\):

+ Nếu \(a>1\) thì \(a^x > a^y\Leftrightarrow x>y\).

+ Nếu \(0 < a < 1\) thì \(a^x > a^y\Leftrightarrow x < y\).

Bài tập minh họa

Ví dụ 1:

Rút gọn biểu thức: \(A = \frac{{{a^{ - n}} + {b^{ - n}}}}{{{a^{ - n}} - {b^{ - n}}}} - \frac{{{a^{ - n}} - {b^{ - n}}}}{{{a^{ - n}} + {b^{ - n}}}}\left( {ab \ne 0;a \ne \pm b} \right)\)

Lời giải:

\(A = \frac{{{a^{ - n}} + {b^{ - n}}}}{{{a^{ - n}} - {b^{ - n}}}} - \frac{{{a^{ - n}} - {b^{ - n}}}}{{{a^{ - n}} + {b^{ - n}}}} = \frac{{{a^n} + {b^n}}}{{{a^n}{b^n}\left( {\frac{{{b^n} - {a^n}}}{{{a^n}{b^n}}}} \right)}} - \frac{{{b^n} - {a^n}}}{{{a^n}{b^n}\left( {\frac{{{a^n} + {b^n}}}{{{a^n}{b^n}}}} \right)}}\)

\(= \frac{{{{\left( {{a^n} + {b^n}} \right)}^2} - {{\left( {{b^n} - {a^n}} \right)}^2}}}{{\left( {{a^n} + {b^n}} \right)\left( {{b^n} - {a^n}} \right)}} = \frac{{4{a^n}{b^n}}}{{{b^{2n}} - {a^{2n}}}}\)

Ví dụ 2:

Cho a,b là các số thực dương .Rút gọn biểu thức sau:

a) \(\left( {1 - 2\sqrt {\frac{a}{b}} + \frac{b}{a}} \right):{\left( {{a^{\frac{1}{2}}} - {b^{\frac{1}{2}}}} \right)^2}\)

b) \(\frac{{{a^{\frac{1}{4}}} - {a^{\frac{9}{4}}}}}{{{a^{\frac{1}{4}}} - {a^{\frac{5}{4}}}}} - \frac{{{b^{ - \frac{1}{2}}} - {b^{\frac{3}{2}}}}}{{{b^{\frac{1}{2}}} + {b^{ - \frac{1}{2}}}}}\)

Lời giải:

a) \(\left( {1 - 2\sqrt {\frac{a}{b}} + \frac{b}{a}} \right):{\left( {{a^{\frac{1}{2}}} - {b^{\frac{1}{2}}}} \right)^2} = {\left( {1 - \sqrt {\frac{a}{b}} } \right)^2}:\left( {\sqrt a - \sqrt b } \right)\)

\(= \frac{{{{\left( {\sqrt b - \sqrt a } \right)}^2}}}{b}.\frac{1}{{{{\left( {\sqrt a - \sqrt b } \right)}^2}}} = \frac{1}{b}\)

b) \(\frac{{{a^{\frac{1}{4}}} - {a^{\frac{9}{4}}}}}{{{a^{\frac{1}{4}}} - {a^{\frac{5}{4}}}}} - \frac{{{b^{ - \frac{1}{2}}} - {b^{\frac{3}{2}}}}}{{{b^{\frac{1}{2}}} + {b^{ - \frac{1}{2}}}}} = \frac{{{a^{\frac{1}{4}}}\left( {1 - {a^2}} \right)}}{{{a^{\frac{1}{4}}}\left( {1 - a} \right)}} - \frac{{{b^{ - \frac{1}{2}}}\left( {1 - {b^2}} \right)}}{{{b^{ - \frac{1}{2}}}\left( {{b^2} - 1} \right)}} = 1 + a + 1 = a + 2\)

Ví dụ 3:

Viết dưới dạng lũy thừa với số mũ hữu tỷ các biểu thức sau:

a) \(A = \sqrt[5]{{2\sqrt[3]{{2\sqrt 2 }}}}\)

b) \(B = \sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{\frac{{11}}{{16}}}}\quad \left( {a > 0} \right)\)

Lời giải:

a) \(A = \sqrt[5]{{2\sqrt[3]{{2\sqrt 2 }}}} = \left\{ {{{\left[ {{{\left( {{2^{\frac{1}{2}}}.2} \right)}^{\frac{1}{3}}}.2} \right]}^{\frac{1}{5}}}} \right\}\)

\(= {\left[ {{{\left( {{2^{\frac{3}{2}}}} \right)}^{\frac{1}{3}}}.2} \right]^{\frac{1}{5}}} = {\left( {{2^{\frac{1}{2}}}.2} \right)^{\frac{1}{5}}} = {2^{\frac{3}{2}\frac{1}{5}}} = {2^{\frac{3}{{10}}}}\)

b) \(B = \sqrt {a\sqrt {a\sqrt {a\sqrt a } } } :{a^{\frac{{11}}{{16}}}} = {\left\{ {{{\left[ {{{\left( {{a^{\frac{3}{2}}}} \right)}^{\frac{1}{2}}}a} \right]}^{\frac{1}{2}}}.a} \right\}^{\frac{1}{2}}}:{a^{\frac{{11}}{{16}}}}\)

\(= {\left[ {{{\left( {{a^{\frac{3}{4} + 1}}} \right)}^{\frac{1}{2}}}.a} \right]^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{8} + 1}}} \right)^{\frac{1}{2}}}:{a^{\frac{{11}}{{16}}}} = \frac{{{a^{\frac{{15}}{{16}}}}}}{{{a^{\frac{{11}}{{16}}}}}} = {a^{\frac{1}{4}}}\)

Ví dụ 4:

Cho a là số thực dương, đơn giản các biểu thức sau:

a) \({a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}}\)

b) \(\frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1\)

Lời giải:

a) \({a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }}{\left( {{a^{ - 1}}} \right)^{\sqrt 2 - 1}} = {a^{\sqrt 2 }}{a^{1 - \sqrt 2 }} = a\)

b) \(\frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1 = \frac{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)\left( {{a^{\sqrt 2 }} + {b^{\sqrt 3 }}} \right)}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1\)

\(= \frac{{{a^{\sqrt 2 }} + {b^{\sqrt 3 }} + {a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}} = \frac{{2{a^{\sqrt 2 }}}}{{{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\)

Ví dụ 5:

Không dùng máy tính bỏ túi, hãy so sánh các cặp số sau:

a) \(\sqrt[4]{{13}}\; \vee \;\sqrt[5]{{23}}\)

b) \({\left( {\frac{1}{3}} \right)^{\sqrt 3 }}\; \vee \;{\left( {\frac{1}{3}} \right)^{\sqrt 2 }}\)

Lời giải:

a) Ta có: \(\left\{ \begin{array}{l} \sqrt[4]{{13}} = \sqrt[{20}]{{{{13}^5}}} = \sqrt[{20}]{{371.293}}\\ \sqrt[5]{{23}} = \sqrt[{20}]{{{{23}^4}}} = \sqrt[{20}]{{279.841}} \end{array} \right. \Rightarrow \sqrt[4]{{13}} > \sqrt[5]{{23}}\)

b) Ta có: \(\sqrt 3 > \sqrt 2 \Rightarrow {\left( {\frac{1}{3}} \right)^{\sqrt 3 }} < {\left( {\frac{1}{3}} \right)^{\sqrt 2 }}\)

4. Luyện tập Bài 1 Chương 2 Toán 12

Trong phạm vi bài học HỌC247 chỉ giới thiệu đến các em những nội dung cơ bản nhất về lũy thừa, tính chất cơ bản của lũy thừa. Đây là một dạng toán nền tảng không chỉ trong phạm vi hàm số mũ mà còn được ứng dụng trong việc giải phương trình, chứng minh bất đẳng thức,....các em cần tìm hiểu thêm.

4.1 Trắc nghiệm

Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Toán 12 Chương 2 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Biểu diễn biểu thức \(K = \sqrt[3]{{\frac{2}{3}\sqrt[3]{{\frac{2}{3}\sqrt {\frac{2}{3}} }}}}\) dưới dạng lũy thừa với số mũ hữu tỉ.

    • A. \(K = {\left( {\frac{2}{3}} \right)^{\frac{5}{{18}}}}\)
    • B. \(K = {\left( {\frac{2}{3}} \right)^{\frac{1}{{2}}}}\)
    • C. \(K = {\left( {\frac{2}{3}} \right)^{\frac{1}{{8}}}}\)
    • D. \(K = {\left( {\frac{2}{3}} \right)^{\frac{1}{{6}}}}\)
  • Câu 2:

    Giả sử a là số thực dương, khác 1. Biểu thức \(\sqrt {a\sqrt[3]{a}}\) được viết dưới dạng \({a^\alpha }\). Khẳng định nào sau đây là đúng?

    • A. \(\alpha = \frac{2}{3}\)
    • B. \(\alpha = \frac{11}{6}\)
    • C. \(\alpha = \frac{1}{6}\)
    • D. \(\alpha = \frac{5}{3}\)
  • Câu 3:

    Cho biểu thức \(P = \frac{{{a^{\frac{1}{3}}}{b^{ - \frac{1}{3}}} - {a^{ - \frac{1}{3}}}{b^{\frac{1}{3}}}}}{{\sqrt[3]{{{a^2}}} - \sqrt[3]{{{b^2}}}}}\). Mệnh đề nào dưới đây đúng?

    • A. \(P = \frac{1}{{\sqrt[3]{{ab}}}}\).
    • B. \(P = \sqrt[3]{{ab}}\).
    • C. \(P = {\left( {ab} \right)^{\frac{2}{3}}}\).
    • D. \(P = - \frac{1}{{\sqrt[3]{{{{\left( {ab} \right)}^2}}}}}\).

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

4.2 Bài tập SGK

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Chương 2 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.

Bài tập 1 trang 55 SGK Giải tích 12

Bài tập 2 trang 55 SGK Giải tích 12

Bài tập 3 trang 56 SGK Giải tích 12

Bài tập 5 trang 57 SGK Giải tích 12

Bài tập 4 trang 57 SGK Giải tích 12

Bài tập 2.1 trang 99 SBT Toán 12

Bài tập 2.2 trang 99 SBT Toán 12

Bài tập 2.3 trang 100 SBT Toán 12

Bài tập 2.4 trang 100 SBT Toán 12

Bài tập 2.5 trang 100 SBT Toán 12

Bài tập 1 trang 75 SGK Toán 12 NC

Bài tập 2 trang 75 SGK Toán 12 NC

Bài tập 2 trang 75 SGK Toán 12 NC

Bài tập 3 trang 76 SGK Toán 12 NC

Bài tập 4 trang 76 SGK Toán 12 NC

Bài tập 5 trang 76 SGK Toán 12 NC

Bài tập 6 trang 76 SGK Toán 12 NC

Bài tập 6 trang 76 SGK Toán 12 NC

Bài tập 7 trang 76 SGK Toán 12 NC

Bài tập 8 trang 78 SGK Toán 12 NC

Bài tập 9 trang 78 SGK Toán 12 NC

Bài tập 10 trang 78 SGK Toán 12 NC

Bài tập 11 trang 78 SGK Toán 12 NC

Bài tập 12 trang 81 SGK Toán 12 NC

Bài tập 13 trang 81 SGK Toán 12 NC

Bài tập 14 trang 81 SGK Toán 12 NC

Bài tập 15 trang 81 SGK Toán 12 NC

Bài tập 16 trang 81 SGK Toán 12 NC

Bài tập 17 trang 81 SGK Toán 12 NC

Bài tập 18 trang 81 SGK Toán 12 NC

Bài tập 19 trang 82 SGK Toán 12 NC

Bài tập 20 trang 82 SGK Toán 12 NC

Bài tập 21 trang 82 SGK Toán 12 NC

Bài tập 22 trang 82 SGK Toán 12 NC

5. Hỏi đáp về Bài 1 Chương 2 Toán 12

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.

-- Mod Toán Học 12 HỌC247

NONE

Bài học cùng chương

Bài 2: Hàm số lũy thừa Toán 12 Bài 2: Hàm số lũy thừa Bài 3: Lôgarit Toán 12 Bài 3: Lôgarit Bài 4: Hàm số mũ. Hàm số lôgarit Toán 12 Bài 4: Hàm số mũ. Hàm số lôgarit Bài 5: Phương trình mũ và phương trình lôgarit Toán 12 Bài 5: Phương trình mũ và phương trình lôgarit Bài 6: Bất phương trình mũ và bất phương trình lôgarit Toán 12 Bài 6: Bất phương trình mũ và bất phương trình lôgarit Ôn tập chương 2 Hàm số lũy thừa, Hàm số mũ và Hàm số Lôgarit Toán 12 Ôn tập chương 2 Hàm số lũy thừa, Hàm số mũ và Hàm số Lôgarit ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 9 Lớp 12 Deserts

Tiếng Anh 12 mới Unit 4

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Ôn tập Hóa học 12 Chương 4

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 1 - Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG Tiếng Anh

Người lái đò sông Đà

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

Quá trình văn học và phong cách văn học

Ai đã đặt tên cho dòng sông

Tây Tiến

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Các Dạng Toán Luỹ Thừa 12