Toán 12 Bài 3: Lôgarit
Có thể bạn quan tâm
Nội dung bài hạc sẽ giúp các em nắm được định nghĩa, các qui tắc tính lôgarit và công thức đổi cơ số. Thông qua các ví dụ minh họa các em sẽ biết vận dụng lôgarit để giải toán.
ATNETWORK YOMEDIA1. Video bài giảng
2. Tóm tắt lý thuyết
2.1. Khái niệm lôgarit
2.2. Các tính chất của lôgarit
2.3. Lôgarit thập phân và lôgarit tự nhiên
3. Bài tập minh hoạ
4. Luyện tập Bài 3 Chương 2 Toán 12
4.1. Trắc nghiệm
4.2. Bài tập SGK
5. Hỏi đáp về Bài 3 Chương 2 Toán 12
Tóm tắt lý thuyết
2.1. Khái niệm lôgarit
- Cho hai số thực dương \(a\) và \(b\) với \(a\ne1\). Số \(\alpha\) thỏa mãn \(a^{\alpha}=b\) được gọi là lôgarit có số \(a\) của \(b\), kí hiệu \(\log_ab=\alpha\).
- Vậy: \(\alpha = {\log _a}b \Leftrightarrow \left\{ \begin{array}{l} 0 < a \ne 1,b > 0\\ {a^\alpha } = b \end{array} \right.\)
- Ví dụ:
+ \(\log_2\sqrt{2}=\frac{1}{2}\) vì \(2^\frac{1}{2}=\sqrt{2}\)
+ \(\log_2\frac{1}{8}=-3\) vì \(2^{-3}=\frac{1}{8}\)
+ \(\log_23=1\) vì \(3^1=3\)
+ \(\log_a1=0\) vì \(a^0=1\)
+ \(\log_23=x\) vì \(2^x=3\)
2.2. Các tính chất của lôgarit
a) Qui tắc tính lôgarit
- Cho số thực \(a\) thỏa \(0< a\neq 1\), ta có các tính chất sau:
- Với \(b>0\): \(a^{\log_ab}=b\)
- Lôgarit của một tích:
+ Với \(x_1,x_2>0\): \(\log_a(x_1.x_2)=\log_ax_1+\log_ax_2\)
+ Mở rộng với \(x_1,x_2,..., x_n>0\): \(\log_a(x_1.x_2....x_n)=\log_ax_1+\log_ax_2+...+\log_ax_n\)
- Lôgarit của một thương
+ Với \(x_1,x_2>0 :\ \log_a\frac{x_1}{x_2}=\log_ax_1-\log_ax_2\)
+ Với \(x> 0: \log_a\frac{1}{x}=-\log_ax\)
- Lôgarit của một lũy thừa:
+ Với \(b>0:\) \(\log_ab^x=x\log_ab\)
+ \(\forall x\): \(\log_aa^x=x\)
b) Công thức đổi cơ số:
- Cho số thực \(a\) thỏa \(0< a\neq 1\), ta có các tính chất sau:
+ Với \(00:\) \(\log_ab=\frac{\log_c \ b}{\log_c \ a}\)
+ Lấy \(0 < b \ne 1\), chọn \(c=b\) ta có: \({\log _a}b = \frac{1}{{{{\log }_b}a}}\)
+ Với \(\alpha \neq 0,b>0\): \(\log_{a^\alpha }b^\beta =\frac{\beta }{\alpha }\log_ab\)
+ Với \(\alpha \neq 0, b>0:\) \(\log_{a^\alpha }b=\frac{1}{\alpha }\log_ab\)
c) So sánh hai lôgarit cùng cơ số
- Nếu \(a>1\) thì \(\log_ax>\log_ay \Leftrightarrow x>y>0\)
2.3. Lôgarit thập phân và lôgarit tự nhiên
a) Lôgarit thập phân
- Lôgarit cơ số 10 của số \(x>0\) được gọi là lôgarit thập phân của \(x\), kí hiệu là \(\log x\) hoặc \(\lg x\).
b) Lôgarit tự nhiên
- Lôgarit cơ số \(e\) của số \(a>0\) được gọi là lôgarit tự nhiên (hay lôgarit Nê-pe) của số a, kí hiệu \(\ln a.\)
Bài tập minh họa
Ví dụ 1:
Tính giá trị các biểu thức sau:
a) \(A = {\log _9}15 + {\log _9}18 - {\log _9}10\)
b) \(B = {\log _{36}}2 - \frac{1}{2}{\log _{\frac{1}{6}}}3\)
c) \(C = {\log _{\frac{1}{4}}}\left( {{{\log }_3}4.{{\log }_2}3} \right)\)
Lời giải:
a) \(A = {\log _9}15 + {\log _9}18 - {\log _9}10 = {\log _9}\frac{{15.18}}{{10}} = {\log _9}{3^3} = \frac{1}{2}{\log _3}{3^3} = \frac{3}{2}\)
b) \(B = {\log _{36}}2 - \frac{1}{2}{\log _{\frac{1}{6}}}3 = \frac{1}{2}{\log _6}2 + \frac{1}{2}{\log _6}3 = \frac{1}{2}{\log _6}2.3 = \frac{1}{2}\)
c) \(C = {\log _{\frac{1}{4}}}\left( {{{\log }_3}4.{{\log }_2}3} \right) = - {\log _4}\left( {{{\log }_2}3.{{\log }_3}4} \right)\)
\(= - {\log _4}\left( {{{\log }_2}4} \right) = - \frac{1}{2}{\log _2}2 = - \frac{1}{2}\)
Ví dụ 2:
Tính các giá trị biểu thức sau (Giả sử các biểu thức đều xác định):
a) \(A = {\log _a}{a^3}\sqrt a \sqrt[5]{a}\)
b) \(B={\log _{\frac{1}{a}}}\frac{{a\sqrt[5]{{{a^3}}}\sqrt[3]{{{a^2}}}}}{{\sqrt a \sqrt[4]{a}}}\)
Lời giải:
a) \(A = {\log _a}{a^3}\sqrt a \sqrt[5]{a} = {\log _a}\left( {{a^{3 + \frac{1}{2} + \frac{1}{5}}}} \right) = 3 + \frac{1}{2} + \frac{1}{5} = \frac{{37}}{{10}}\)
b) \(B=lo{g_{\frac{1}{a}}}\frac{{a\sqrt[5]{{{a^3}}}\sqrt[3]{{{a^2}}}}}{{\sqrt a \sqrt[4]{a}}} = - {\log _a}\left( {\frac{{{a^{1 + \frac{3}{5} + \frac{2}{3}}}}}{{{a^{\frac{1}{2} + \frac{1}{4}}}}}} \right) = - \left( {\frac{{34}}{{15}} - \frac{3}{4}} \right) = - \frac{{91}}{{60}}\)
Ví dụ 3:
a) Tính \(A= {\log _3}135\) biết \({\log _2}5 = a;{\log _2}3 = b\)
b) Tính \(B={\log _{49}}32\) biết \({\log _2}14 = a\)
Lời giải:
a) \(A = {\log _3}135 = {\log _3}{5.3^3} = {\log _3}5 + 3 = \frac{{{{\log }_2}5}}{{{{\log }_2}3}} + 3 = \frac{a}{b} + 3 = \frac{{a + 3b}}{b}\)
b) Ta có: \({\log _2}14 = a \Leftrightarrow 1 + {\log _2}7 = a \Rightarrow {\log _2}7 = a - 1\)
Vậy: \({\log _{49}}32 = \frac{{{{\log }_2}{2^5}}}{{{{\log }_2}{7^2}}} = \frac{5}{{2{{\log }_2}7}} = \frac{5}{{2\left( {a - 1} \right)}}\)
Ví dụ 4:
Không dùng máy tính, hãy so sánh:
a) \({\log _{0,4}}\sqrt 2 \; \vee \;{\log _{0,2}}0,34\)
b) \({\log _{\frac{5}{3}}}\frac{3}{4}\; \vee \;{\log _{\frac{3}{4}}}\frac{2}{5}\)
c) \({2^{{{\log }_5}3}}\; \vee \;{3^{{{\log }_5}\frac{1}{2}}}\)
Lời giải:
a) Ta có: \(\left\{ \begin{array}{l} \sqrt 2 > 1 \Rightarrow {\log _{0,4}}\sqrt 2 < {\log _{0,4}}1 = 0\\ 0,3 < 1 \Rightarrow {\log _{0,2}}0,3 > {\log _{0,2}}1 = 0 \end{array} \right. \Rightarrow {\log _{0,2}}0,3 > {\log _{0,4}}\sqrt 2\)
b) Ta có: \(\left\{ \begin{array}{l} \frac{5}{3} > 1;0 < \frac{3}{4} < 1 \Rightarrow {\log _{\frac{5}{3}}}\frac{3}{4} < {\log _{\frac{5}{3}}}1 = 0\\ 0 < \frac{3}{4} < 1;0 < \frac{2}{5} < 1 \Rightarrow {\log _{\frac{3}{4}}}\frac{2}{5} > {\log _{\frac{3}{4}}}1 = 0 \end{array} \right. \Rightarrow {\log _{\frac{3}{4}}}\frac{2}{5} > {\log _{\frac{5}{3}}}\frac{3}{4}\)
c) Ta có: \(\left\{ \begin{array}{l} {\log _5}3 > {\log _5}1 \Rightarrow {2^{{{\log }_5}3}} > {2^{{{\log }_5}1}} = {2^0} = 1\\ {\log _5}\frac{1}{2} < {\log _5}1 \Rightarrow {3^{{{\log }_5}\frac{1}{2}}} < {3^{{{\log }_5}1}} = {3^0} = 1 \end{array} \right. \Rightarrow {\log _5}3 > {\log _5}\frac{1}{2}\)
4. Luyện tập Bài 3 Chương 2 Toán 12
Nội dung bài hạc sẽ giúp các em nắm được định nghĩa, các qui tắc tính lôgarit và công thức đổi cơ số. Thông qua các ví dụ minh họa các em sẽ biết vận dụng lôgarit để giải toán.
4.1 Trắc nghiệm
Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Toán 12 Chương 2 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Rút gọn biểu thức
\(A = {\log _a}\frac{{{a^2}.\sqrt[3]{{{a^2}}}.a.\sqrt[5]{{{a^4}}}}}{{\sqrt[3]{a}}}\) với \(a > 0;\,\,a \ne 1\).
- A. \(A = \frac{{62}}{5}\)
- B. \(A = \frac{{16}}{5}\)
- C. \(A = \frac{{22}}{5}\)
- D. \(A = \frac{{67}}{5}\)
-
Câu 2:
Tính giá trị của biểu thức \(P = {\log _a}a\sqrt[3]{{a\sqrt[3]{{a\sqrt a }}}}\) với \(0 < a \ne 1.\)
- A. \(P = \frac{3}{{10}}\)
- B. \(P = 4\)
- C. \(P = \frac{1}{2}\)
- D. \(P = \frac{1}{4}\)
-
Câu 3:
Đặt \(a = {\log _2}3,b = {\log _5}3\). Hãy biểu diễn \({\log _6}45\) theo a và b.
- A. \({\log _6}45 = \frac{{2{a^2} - 2ab}}{{ab}}\)
- B. \({\log _6}45 = \frac{{2{a^2} - 2ab}}{{ab + b}}\)
- C. \({\log _6}45 = \frac{{a + 2ab}}{{ab + b}}\)
- D. \({\log _6}45 = \frac{{a + 2ab}}{{2ab + b}}\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
4.2 Bài tập SGK
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 12 Chương 2 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 12 Cơ bản và Nâng cao.
Bài tập 1 trang 68 SGK Giải tích 12
Bài tập 2 trang 68 SGK Giải tích 12
Bài tập 3 trang 68 SGK Giải tích 12
Bài tập 4 trang 68 SGK Giải tích 12
Bài tập 5 trang 68 SGK Giải tích 12
Bài tập 2.15 trang 109 SBT Toán 12
Bài tập 2.16 trang 109 SBT Toán 12
Bài tập 2.17 trang 109 SBT Toán 12
Bài tập 2.18 trang 109 SBT Toán 12
Bài tập 2.19 trang 109 SBT Toán 12
Bài tập 2.20 trang 109 SBT Toán 12
Bài tập 2.21 trang 109 SBT Toán 12
Bài tập 2.22 trang 110 SBT Toán 12
Bài tập 2.23 trang 110 SBT Toán 12
Bài tập 2.24 trang 110 SBT Toán 12
Bài tập 2.25 trang 110 SBT Toán 12
Bài tập 2.26 trang 110 SBT Toán 12
Bài tập 23 trang 89 SGK Toán 12 NC
Bài tập 24 trang 89 SGK Toán 12 NC
Bài tập 25 trang 89 SGK Toán 12 NC
Bài tập 26 trang 89 SGK Toán 12 NC
Bài tập 27 trang 90 SGK Toán 12 NC
Bài tập 28 trang 90 SGK Toán 12 NC
Bài tập 29 trang 90 SGK Toán 12 NC
Bài tập 30 trang 90 SGK Toán 12 NC
Bài tập 31 trang 90 SGK Toán 12 NC
Bài tập 32 trang 92 SGK Toán 12 NC
Bài tập 33 trang 92 SGK Toán 12 NC
Bài tập 34 trang 92 SGK Toán 12 NC
Bài tập 35 trang 92 SGK Toán 12 NC
Bài tập 36 trang 93 SGK Toán 12 NC
Bài tập 37 trang 93 SGK Toán 12 NC
Bài tập 38 trang 93 SGK Toán 12 NC
Bài tập 39 trang 93 SGK Toán 12 NC
Bài tập 40 trang 93 SGK Toán 12 NC
Bài tập 41 trang 93 SGK Toán 12 NC
Bài tập 42 trang 97 SGK Toán 12 NC
Bài tập 43 trang 97 SGK Toán 12 NC
Bài tập 44 trang 97 SGK Toán 12 NC
Bài tập 45 trang 97 SGK Toán 12 NC
Bài tập 46 trang 97 SGK Toán 12 NC
5. Hỏi đáp Bài 3 Chương 2 Toán 12
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 12 HỌC247
NONE Bài học cùng chương
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 4
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 4
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 1 - Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Người lái đò sông Đà
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Ai đã đặt tên cho dòng sông
Tây Tiến
Quá trình văn học và phong cách văn học
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Số 12 Lôgarit
-
Lôgarit - Toán 12
-
Giải Toán 12 Bài 3: Lôgarit
-
Giải Bài Tập Trang 68 SGK Giải Tích 12 - Lôgarit - Thủ Thuật
-
Logarit Lớp 12 - Lý Thuyết Và Bài Tập Chọn Lọc
-
Giải Toán 12 Bài 3. Lôgarit - Giải Bài Tập
-
Logarit Lớp 12 - Giải Bài Tập SGK (Toán Giải Tích)
-
Công Thức Logarit Toán 12
-
Sách Giải Bài Tập Toán Lớp 12 Bài 3: Lôgarit
-
Lý Thuyết Bài 3: Lôgarit - Chương II - Giải Tích Lớp 12 - HocTapHay
-
Giải Bài Tập SGK Toán 12 Bài 3: Lôgarit
-
Soạn Đại Số Lớp 12 Bài 3 Logarit Ngắn Gọn Và Chi Tiết Nhất
-
Tập Xác Định Và Công Thức Logarit | Thầy Nguyễn Phan Tiến
-
Toán Học Lớp 12 - Đại Số - Chương 2 - Bài 3 - LÔGARIT - Tiết 1 ...