Toán 7 Bài 2: Một Số Bài Toán Về đại Lượng Tỉ Lệ Thuận
Có thể bạn quan tâm
Ở bài học trước các em đã được tìm hiểu về Đại lượng tỉ lệ thuận, bài học này sẽ giới thiệu những dạng toán điển hình liên quan đến khái niệm này thông qua những bài toán cụ thể.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
2. Bài tập minh hoạ
3. Luyện tập Bài 2 Chương 2 Đại số 7
3.1 Trắc nghiệm về Một số bài toán về dại lượng tỉ lệ thuận
3.2. Bài tập SGK về Một số bài toán về đại lượng tỉ lệ thuận
4. Hỏi đáp Bài 2 Chương 2 Đại số 7
Tóm tắt lý thuyết
Để giải các bài toán về đại lượng tỉ lệ thuận ta vận dụng các kiến thức sau:
- Tính chất của đại lượng tỉ lệ thuận: \(\frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_3}}}{{{x_3}}}...\)
- Tính chất của dãy số bằng nhau: \(\frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_1} + {y_2}}}{{{x_1} + {x_2}}} = \frac{{{y_1} - {y_2}}}{{{x_1} - {x_2}}} = ....\)
Ví dụ 1:
Biết các số x, y, z tỉ lệ thuận với các số 5, 3,2 và x – y + z = 8. Tìm các số đó.
Hướng dẫn giải:
Ta có: \(\frac{x}{5} = \frac{y}{3} = \frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{5} = \frac{y}{3} = \frac{z}{2} = \frac{{x - y + 2}}{{5 - 3 + 2}} = \frac{8}{4} = 2\)
Vậy:
x = 2.5 = 10
y= 2.3 = 6
z= 2.2 =4.
Ví dụ 2:
Ba lớp 7A, 7B, 7C cùng tham gia lao động trồng cây. Số cây mỗi lớp trồng tỉ lệ với các số 3; 5; 8 và hai lần số cây của lớp 7A cộng với bốn lần số cây của lớp 7B thì hơn số cây của lớp 7C là 108 cây. Tính số cây mỗi lớp trồng được.
Hướng dẫn giải:
Gọi x, y, z là số cây trồng được của 3 lớp 7A, 7B, 7C. Theo đề bài ta có:
\(\frac{x}{3} = \frac{y}{5} = \frac{z}{8}\) và 2x + 4y – z = 108
Suy ra \(\frac{x}{3} = \frac{y}{5} = \frac{z}{8} = \frac{{2x + 4y - z}}{{6 + 20 - 8}} = \frac{{108}}{{18}} = 6\)
Do đó:
\(\begin{array}{l}\frac{x}{3} = 6 \Rightarrow x = 18\\\frac{y}{5} = 6 \Rightarrow y = 30\\\frac{z}{8} = 6 \Rightarrow z = 48\end{array}\)
Vậy lớp 7A trồng được 18 cây; 7B trồng được 30 cây; 7C trồng được 48 cây.
Ví dụ 3:
Chia một số a thành ba phần A, B, C theo tỷ lệ 7; 6; 5. Sau đó chia số a cũng thành ba phần A’, B’, C’ nhưng lại theo tỷ kệ 6; 5; 4.
a. Hỏi so với lần chia đầu, thì lần chia sau A’, B’, C’ tăng hay giảm.
b. Biết rằng có một phần tăng 1200. Tính số a và A’, B’, C’ trong lần chia sau.
Hướng dẫn giải:
a. Trong lần đầu ta có:
\(\frac{A}{7} = \frac{B}{6} = \frac{C}{5}\) và A + B + C = a
Suy ra \(\frac{A}{7} = \frac{B}{6} = \frac{C}{5} = \frac{{A + B + C}}{{7 + 6 + 5}} = \frac{a}{{18}}\)
Nên \(A = \frac{{7a}}{{18}};\,\,\,\,B = \frac{{6a}}{{18}};\,\,\,\,\,C = \frac{{5a}}{{18}}\)
Trong lần chia sau, ta có:
\(\frac{{A'}}{6} = \frac{{B'}}{5} = \frac{{C'}}{4}\) và A’ + B’ + C’ = a
Suy ra \(\frac{{A'}}{6} = \frac{{B'}}{5} = \frac{{C'}}{4} = \frac{{A' + B' + C'}}{{6 + 5 + 4}} = \frac{a}{{15}}\)
Nên \(A' = \frac{{6a}}{{15}};\,\,\,\,B' = \frac{{5a}}{{15}};\,\,\,\,\,C' = \frac{{4a}}{{15}}\)
Ta có:
\(\begin{array}{l}\frac{{7a}}{{18}} = \frac{{35a}}{{90}};\,\,\,\,\,\,\frac{{6a}}{{15}} = \frac{{36a}}{{90}} \Rightarrow \frac{{7a}}{{18}} < \frac{{6a}}{{15}}\\\frac{{6a}}{{18}} = \frac{a}{3};\,\,\,\frac{{5a}}{{15}} = \frac{a}{3} \Rightarrow \frac{{6a}}{{18}} = \frac{{5a}}{{15}}\\\frac{{5a}}{{18}} = \frac{{25a}}{{90}};\,\,\,\frac{{4a}}{{15}} = \frac{{24a}}{{90}} \Rightarrow \frac{{5a}}{{18}} > \frac{{4a}}{{15}}\end{array}\)
Vậy so với lần chia đầu thì lần chia sau A’ tăng, B’ vẫn giữ nguyên và C’ giảm.
b. Ta có A’ tăng 1200.
Nên:
A’ – A = 1200 hay \(\frac{{36a}}{{90}} = \frac{{35a}}{{90}} = 1200\)
Do đó: \(\frac{a}{{90}} = 1200\)
Vậy a = 1200.90=108.000
Do đó:
\(\begin{array}{l}A' = \frac{{6.108000}}{{15}} = 34200\\B' = \frac{{5.108000}}{{15}} = 36000\\C' = \frac{{6.108000}}{{15}} = 28800\end{array}\).
Bài tập minh họa
Bài 1:
Tìm số có ba chữ số biết rằng số đó là bội của 18 và các chữ số của nó tỷ lệ theo 1:2:3.
Hướng dẫn giải:
Gọi a, b, c là các chữ số của số có ba chữ số cần tìm. Vì mỗi chữ số a, b, c không vượt quá 9 và ba chữ số a, b, c không thể đồng thời bằng 0 vì khi đó ta không được số có ba chữ số nên \(1 \le a + b + c \le 27\)
Mặt khác số phải tìm là bội của 18 nên a + b + c = 9 hoặc a + b + c = 18 hoặc a + b + c =27.
Theo giả thiết ta có: \(\frac{a}{1} = \frac{b}{2} = \frac{c}{3} = \frac{{a + b + c}}{6}\) do đó \((a + b + c)\,\, \vdots \,\,6\)
Nên \(a{\rm{ }} + {\rm{ }}b{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}18 \Rightarrow \frac{a}{1} = \frac{b}{2} = \frac{c}{3} = \frac{{18}}{6} = 3\)
Suy ra a = 3; b = 6; c = 9.
Vì số pải tìm chia hết cho 18 nên chữ số hàng đơn vị của nó phải là số chẵn.
Vậy các số phải tìm là: 396; 936.
Bài 2:
Chia số 210 thành bốn phần sao cho phần thứ nhất và phần thứ hai tỉ lệ với 2 và 3, phần thứ hai và phần thứ ba tỉ lệ với 4 và 5, phần thứ ba và phần thứ tư tỉ lệ với 6 và 7.
Hướng dẫn giải:
Gọi bốn phần phải tìm là x, y, z, t
Ta có:
\(\begin{array}{l}\frac{x}{y} = \frac{2}{3} = \frac{{16}}{{24}} \Rightarrow \frac{x}{{16}} = \frac{y}{{24}}\\\frac{y}{z} = \frac{4}{3} = \frac{{24}}{{30}} \Rightarrow \frac{y}{{24}} = \frac{z}{{30}}\\\frac{z}{t} = \frac{6}{7} = \frac{{30}}{{35}} \Rightarrow \frac{z}{{30}} = \frac{t}{{35}}\end{array}\)
Nên \(\frac{x}{{16}} = \frac{y}{{24}} = \frac{z}{{30}} = \frac{t}{{35}} = \frac{{x + y + z + t}}{{16 + 24 + 30 + 35}} = \frac{{210}}{{105}} = 2\).
Do đó:
\(\begin{array}{l}\frac{x}{{16}} = 2 \Rightarrow x = 32\\\frac{y}{{24}} = 2 \Rightarrow y = 48\\\frac{z}{{30}} = 2 \Rightarrow z = 60\\\frac{t}{{35}} = 2 \Rightarrow t = 70\end{array}\).
Bài 3:
Nếu \(\frac{1}{4}\) của 20 là 4 thì \(\frac{1}{3}\) của 10 sẽ là bao nhiêu?
Hướng dẫn giải:
Ta có \(\frac{1}{4}\)của 20 là 5, nhưng theo giả thiết số này tương ứng với 4
\(\frac{1}{3}\)của 10 là \(\frac{{10}}{3}\) theo giả thiết trên thì số \(\frac{{10}}{3}\) này phải ứng với số x mà ta phải tìm.
Vì số 5 và \(\frac{{10}}{3}\) tương ứng với 4 và x là hai đại lượng tỉ lệ thuận nên:
\(\frac{5}{{\frac{{10}}{3}}} = \frac{4}{x} \Rightarrow x = \frac{{\frac{{10}}{3}.4}}{5} = \frac{8}{3}\)
Vậy \(x = \frac{8}{3} = 2\frac{2}{3}\).
3. Luyện tập Bài 2 Chương 2 Đại số 7
Qua bài giảng Một số bài toán về đại lượng tỉ lệ thuận này, các em sẽ nhận biết và làm được những bài toán liên quan đại lượng tỉ lệ thuận
3.1 Trắc nghiệm về Một số bài toán về đại lượng tỉ lệ thuận
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 7 Bài 2 cực hay có đáp án và lời giải chi tiết.
-
Câu 1:
Cho x, y là hai đại lượng tỉ lệ thuận. Biết rằng với hai giá trị x1, x2 của x có tổng bằng 1 thì hai giá trị tương ứng y1, y2 có tổng bằng 5. Biểu diễn y theo x ta được
- A. \(y = \frac{1}{5}x\)
- B. y = 5x
- C. y = 3x
- D. y = 2x
-
Câu 2:
Biết độ dài ba cạnh của một tam giác tỉ lệ thuận với 3, 5, 7. Biết rằng tổng độ dài cạnh lớn nhất và cạnh nhỏ nhất lớn hơn cạnh còn lại là 20m. Tính cạnh nhỏ nhất của tam giác
- A. 20m
- B. 12m
- C. 15m
- D. 16m
-
Câu 3:
Khi có y = kx ta nói
- A. y tỉ lệ thuận với x theo hệ số tỉ lệ k
- B. x tỉ lệ thuận với y theo hệ số tỉ lệ k
- C. x và y không tỉ lệ thuận với nhau
- D. Không kết luận được gì về x và y
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2. Bài tập SGK về Một số bài toán về đại lượng tỉ lệ thuận
Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 7 Bài 2 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 5 trang 55 SGK Toán 7 Tập 1
Bài tập 6 trang 55 SGK Toán 7 Tập 1
Bài tập 7 trang 56 SGK Toán 7 Tập 1
Bài tập 8 trang 56 SGK Toán 7 Tập 1
Bài tập 9 trang 56 SGK Toán 7 Tập 1
Bài tập 10 trang 56 SGK Toán 7 Tập 1
Bài tập 11 trang 56 SGK Toán 7 Tập 1
Bài tập 8 trang 66 SBT Toán 7 Tập 1
Bài tập 9 trang 66 SBT Toán 7 Tập 1
Bài tập 10 trang 66 SBT Toán 7 Tập 1
Bài tập 11 trang 66 SBT Toán 7 Tập 1
Bài tập 12 trang 67 SBT Toán 7 Tập 1
Bài tập 13 trang 67 SBT Toán 7 Tập 1
Bài tập 14 trang 67 SBT Toán 7 Tập 1
Bài tập 15 trang 67 SBT Toán 7 Tập 1
Bài tập 16 trang 67 SBT Toán 7 Tập 1
Bài tập 17 trang 67 SBT Toán 7 Tập 1
Bài tập 2.1 trang 68 SBT Toán 7 Tập 1
Bài tập 2.2 trang 68 SBT Toán 7 Tập 1
Bài tập 2.3 trang 68 SBT Toán 7 Tập 1
4. Hỏi đáp Bài 2 Chương 2 Đại số 7
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
-- Mod Toán Học 7 HỌC247
NONEBài học cùng chương
Toán 7 Bài 1: Đại lượng tỉ tệ thuận Toán 7 Bài 3: Đại lượng tỉ lệ nghịch Toán 7 Bài 4: Một số bài toán về đại lượng tỉ lệ nghịch Toán 7 Bài 5: Hàm số Toán 7 Bài 6: Mặt phẳng tọa độ Toán 7 Bài 7: Đồ thị của hàm số y = ax (a ≠ 0) ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORKXEM NHANH CHƯƠNG TRÌNH LỚP 7
Toán 7
Toán 7 Kết Nối Tri Thức
Toán 7 Chân Trời Sáng Tạo
Toán 7 Cánh Diều
Giải bài tập Toán 7 KNTT
Giải bài tập Toán 7 CTST
Giải bài tập Toán 7 Cánh Diều
Trắc nghiệm Toán 7
Đề thi giữa HK1 môn Toán 7
Ngữ văn 7
Ngữ Văn 7 Kết Nối Tri Thức
Ngữ Văn 7 Chân Trời Sáng Tạo
Ngữ Văn 7 Cánh Diều
Soạn Văn 7 Kết Nối Tri Thức
Soạn Văn 7 Chân Trời Sáng Tạo
Soạn Văn 7 Cánh Diều
Văn mẫu 7
Đề thi giữa HK1 môn Ngữ Văn 7
Tiếng Anh 7
Tiếng Anh 7 Kết Nối Tri Thức
Tiếng Anh 7 Chân Trời Sáng Tạo
Tiếng Anh 7 Cánh Diều
Trắc nghiệm Tiếng Anh 7 KNTT
Trắc nghiệm Tiếng Anh 7 CTST
Trắc nghiệm Tiếng Anh 7 Cánh Diều
Giải Sách bài tập Tiếng Anh 7
Đề thi giữa HK1 môn Tiếng Anh 7
Khoa học tự nhiên 7
Khoa học tự nhiên 7 KNTT
Khoa học tự nhiên 7 CTST
Khoa học tự nhiên 7 Cánh Diều
Giải bài tập KHTN 7 KNTT
Giải bài tập KHTN 7 CTST
Giải bài tập KHTN 7 Cánh Diều
Trắc nghiệm Khoa học tự nhiên 7
Đề thi giữa HK1 môn KHTN 7
Lịch sử và Địa lý 7
Lịch sử & Địa lí 7 KNTT
Lịch sử & Địa lí 7 CTST
Lịch sử & Địa lí 7 Cánh Diều
Giải bài tập LS và ĐL 7 KNTT
Giải bài tập LS và ĐL 7 CTST
Giải bài tập LS và ĐL 7 Cánh Diều
Trắc nghiệm Lịch sử và Địa lí 7
Đề thi giữa HK1 môn LS và ĐL 7
GDCD 7
GDCD 7 Kết Nối Tri Thức
GDCD 7 Chân Trời Sáng Tạo
GDCD 7 Cánh Diều
Giải bài tập GDCD 7 KNTT
Giải bài tập GDCD 7 CTST
Giải bài tập GDCD 7 Cánh Diều
Trắc nghiệm GDCD 7
Đề thi giữa HK1 môn GDCD 7
Công nghệ 7
Công nghệ 7 Kết Nối Tri Thức
Công nghệ 7 Chân Trời Sáng Tạo
Công nghệ 7 Cánh Diều
Giải bài tập Công nghệ 7 KNTT
Giải bài tập Công nghệ 7 CTST
Giải bài tập Công nghệ 7 Cánh Diều
Trắc nghiệm Công nghệ 7
Đề thi giữa HK1 môn Công nghệ 7
Tin học 7
Tin học 7 Kết Nối Tri Thức
Tin học 7 Chân Trời Sáng Tạo
Tin học 7 Cánh Diều
Giải bài tập Tin học 7 KNTT
Giải bài tập Tin học 7 CTST
Giải bài tập Tin học 7 Cánh Diều
Trắc nghiệm Tin học 7
Đề thi giữa HK1 môn Tin học 7
Cộng đồng
Hỏi đáp lớp 7
Tư liệu lớp 7
Xem nhiều nhất tuần
Video Toán nâng cao lớp 7
Tiếng gà trưa - Xuân Quỳnh - Ngữ văn 7 Cánh Diều
Quê hương - Tế Hanh - Ngữ văn 7 Kết Nối Tri Thức
Con chim chiền chiện - Huy Cận - Ngữ văn 7 Chân Trời Sáng Tạo
Toán 7 CTST Bài 2: Các phép tính với số hữu tỉ
Toán 7 Cánh diều Bài tập cuối chương 1
Toán 7 KNTT Bài 1: Tập hợp các số hữu tỉ
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Bài Tập Về đại Lượng Tỉ Lệ Thuận Toán 7
-
Bài Tập Một Số Bài Toán Về đại Lượng Tỉ Lệ Thuận Chọn Lọc, Có đáp án
-
BÀI TẬP MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ THUẬN ... - Hocmai
-
Các Dạng Toán Về đại Lượng Tỉ Lệ Thuận, Tỉ Lệ Nghịch Và Bài Tập
-
Một Số Bài Toán Về đại Lượng Tỉ Lệ Thuận - Sách Bài Tập Toán Lớp 7
-
Chuyên đề đại Lượng Tỉ Lệ Thuận, Một Số Bài Toán Về đại ... - Toán THCS
-
Bài Tập Về đại Lượng Tỉ Lệ Thuận - đại Lượng Tỉ Lệ Nghịch
-
Lý Thuyết, Bài Tập Về Đại Lượng Tỉ Lệ Thuận đại Số Lớp 7 Có Lời Giải
-
Một Số Bài Toán Về đại Lượng Tỉ Lệ Thuận - Bài Tập Toán Lớp 7
-
Một Số Bài Toán Về đại Lượng Tỉ Lệ Thuận
-
Một Số Bài Toán Về đại Lượng Tỉ Lệ Thuận Lớp 7 - Tin Công Chức
-
Một Số Bài Toán Về đại Lượng Tỉ Lệ Thuận - Cô Nguyễn Anh (HAY NHẤT)
-
Bài Tập đại Lượng Tỉ Lệ Thuận Lớp 7 - Đại Số 7 Chương 2 - Icongchuc
-
Cách Giải Bài Toán Dạng: Đại Lượng Tỉ Lệ Thuận Và Một ...
-
Bài 2: Một Số Bài Toán Về đại Lượng Tỉ Lệ Thuận