Trong Không Gian Oxyz Cho Mặt Cầu ( S ):x^2 + Y^2 + ( Z - Tự Học 365

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Trong không gian Oxyz cho mặt cầu ( S ):x^2 + y^2 + ( z - căn 2 )^2 = 3. Có tất cả bao nhiêu điểm Trong không gian Oxyz cho mặt cầu ( S ):x^2 + y^2 + ( z - căn 2 )^2 = 3. Có tất cả bao nhiêu điểm

Câu hỏi

Nhận biết

Trong không gian \(Oxyz\) cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {\left( {z - \sqrt 2 } \right)^2} = 3\). Có tất cả bao nhiêu điểm \(A\left( {a;\,b;\,c} \right)\) (\(a,b,c\) là các số nguyên) thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho có ít nhất hai tiếp tuyến của \(\left( S \right)\) qua \(A\) và hai tiếp tuyến đó vuông góc với nhau?

A. \(12\). B. \(4\). C. \(8\). D. \(16\).

Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {0\,;\,0\,;\,\sqrt 2 } \right)\) bán kính \(R = \sqrt 3 \).

Ta có : \(d\left( {I,\left( {Oxy} \right)} \right) = \sqrt 2 < R\) nên mặt cầu \(\left( S \right)\) cắt mặt phẳng \(\left( {Oxy} \right)\).

Dề có tiếp tuyến của \(\left( S \right)\) đi qua \(A\) thì \(AI \ge R = \sqrt 3 \,\,\left( 1 \right)\).

Có \(A \in \left( {Oxy} \right)\) \( \Rightarrow A\left( {a;b;0} \right)\), \(IA = \sqrt {{a^2} + {b^2} + 2} \).

Quỹ tích các tiếp tuyến đi qua \(A\) của \(S\) là một mặt nón nếu \(AI > R\) và là một mặt phẳng nếu \(AI = R\).

+) TH1 : Quỹ tích là mặt phẳng thì chắc chắn có ít nhất \(2\) tiếp tuyến của \(S\) đi qua \(A\) và vuông góc với nhau.

+) TH2 : Quỹ tích các tiếp tuyến đi qua \(A\) của \(\left( S \right)\) là một mặt nón, gọi \(AM\) và \(AN\) là hai tiếp tuyến sao cho \(A,N,I,N\) đồng phẳng.

Tồn tại ít nhất hai tiếp tuyến của \(\left( S \right)\) đi qua \(A\) và hai tiếp tuyến đó vuông góc với nhau khi và chỉ khi \(\widehat {MAN} \ge {90^0}\) \( \Leftrightarrow IA \le R\sqrt 2 = \sqrt 6 \,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra \(\sqrt 3 \le \sqrt {{a^2} + {b^2} + 2} \le \sqrt 6 \Leftrightarrow 1 \le {a^2} + {b^2} \le 4\).

Do \(a,b \in \mathbb{Z}\) nên \({a^2} + {b^2} \in \left\{ {1;2;3;4} \right\}\)

+ TH1 : \({a^2} + {b^2} = 1\) thì \(\left\{ \begin{array}{l}{a^2} = 0\\{b^2} = 1\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}{a^2} = 1\\{b^2} = 0\end{array} \right.\) nên có \(4\) bộ số thỏa mãn.

+ TH2 : \({a^2} + {b^2} = 2\) thì \(\left\{ \begin{array}{l}{a^2} = 1\\{b^2} = 1\end{array} \right.\) nên có \(4\) bộ số thỏa mãn.

+ TH3 : \({a^2} + {b^2} = 3\) thì không có \(a,b \in \mathbb{Z}\) nên loại.

+ TH4 : \({a^2} + {b^2} = 4\) thì \(\left\{ \begin{array}{l}{a^2} = 0\\{b^2} = 4\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}{a^2} = 4\\{b^2} = 0\end{array} \right.\) nên có \(4\) bộ số thỏa mãn

Vậy có \(4 + 4 + 4 = 12\) bộ số \(\left( {a;b} \right)\) thỏa mãn bài toán hay có \(12\) điểm \(A\).

Chọn A.

Ý kiến của bạn Hủy

Luyện tập

Câu hỏi liên quan

  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết

Đăng ký

Năm sinh20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Số điểm Có Tọa độ Nguyên Thuộc Mặt Cầu