Trong Không Gian Với Hệ Tọa độ Oxyz Cho Bốn điểm S( - 1;6;2 );A( 0

KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY Trong không gian với hệ tọa độ Oxyz cho bốn điểm S( - 1;6;2 );A( 0;0;6 );B( 0;3;0 );C( - 2;0;0 ). Trong không gian với hệ tọa độ Oxyz cho bốn điểm S( - 1;6;2 );A( 0;0;6 );B( 0;3;0 );C( - 2;0;0 ).

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho bốn điểm \(S\left( { - 1;6;2} \right);\,\,A\left( {0;0;6} \right);\,\,B\left( {0;3;0} \right);\,\,C\left( { - 2;0;0} \right)\). Gọi \(H\) là chân đường cao vẽ từ \(S\) của tứ diện \(SABC\). Phương trình mặt phẳng đi qua ba điểm \(S,\,\,B,\,\,H\) là :

A. \(x + y - z - 3 = 0\)                   B. \(x - 2y + 5z + 6 = 0\)              C. \(x + 5y - 7z - 15 = 0\)             D. \(7x + 5y - 4z - 15 = 0\)

Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Phương trình mặt phẳng \(\left( {ABC} \right):\,\,\dfrac{x}{{ - 2}} + \dfrac{y}{3} + \dfrac{z}{6} = 1 \Leftrightarrow  - 3x + 2y + z - 6 = 0\).

Gọi \(d\) là đường thẳng qua \(S\) và vuông góc với \(\left( {ABC} \right)\) suy ra \(d:\,\,\left\{ \begin{array}{l}x =  - 1 - 3t\\y = 6 + 2t\\z = 2 + t\end{array} \right.\).

Ta có \(SH \bot \left( {ABC} \right) \Rightarrow H \in d \Rightarrow H\left( { - 1 - 3t;6 + 2t;2 + t} \right)\)

\(\begin{array}{l}H \in \left( {ABC} \right) \Rightarrow  - 3\left( { - 1 - 3t} \right) + 2\left( {6 + 2t} \right) + \left( {2 + t} \right) - 6 = 0\\ \Leftrightarrow 14t + 11 = 0 \Leftrightarrow t = \dfrac{{ - 11}}{{14}} \Rightarrow H\left( {\dfrac{{19}}{{14}};\dfrac{{62}}{{14}};\dfrac{{17}}{{14}}} \right)\end{array}\)

Ta có : 

\(\left\{ \begin{array}{l}\overrightarrow {SB} = \left( {1; - 3; - 2} \right)\\\overrightarrow {BH} = \left( {\frac{{19}}{{14}};\frac{{20}}{{14}};\frac{{17}}{{14}}} \right)\end{array} \right. \Rightarrow \left[ {\overrightarrow {SB} ;\overrightarrow {BH} } \right] = \left( {\frac{{ - 11}}{{14}};\frac{{ - 55}}{{14}};\frac{{77}}{{14}}} \right)//\left( {1;5; - 7} \right)\)

\( \Rightarrow \left( {SBH} \right)\) đi qua \(B\left( {0;3;0} \right)\) và nhận \(\overrightarrow n  = \left( {1;5;-7} \right)\) là 1 VTPT.

\( \Rightarrow pt\left( {SBH} \right):\,\,1\left( {x - 0} \right)+5\left( {y - 3} \right) -7\left( {z - 0} \right) = 0 \Leftrightarrow x+5y - 7z-15= 0\) .

Chọn C.

Ý kiến của bạn Hủy

Luyện tập

Câu hỏi liên quan

  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Tìm Tọa độ Chân đường Cao Oxyz