Trong Không Gian Với Hệ Tọa độ Oxyz, Cho Hình Hộp ABCD.ABCD ...

YOMEDIA NONE Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.ABCD. Biết A(1;0;1), B(2;1;2), C(4;5;-5), D(1;-1;1). ADMICRO
  • Câu hỏi:

    Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'. Biết A(1;0;1), B(2;1;2), C'(4;5;-5), D(1;-1;1). Tọa độ của đỉnh A' là:

    • A. (5;- 5;- 6)
    • B. (3;5;- 6)
    • C. (- 5;- 5;6)
    • D. (- 5;5;- 6)

    Lời giải tham khảo:

    Đáp án đúng: B

    \(\overrightarrow {DC} = \overrightarrow {AB} \Rightarrow \left( {{x_C} - 1;{y_C} + 1;{z_C} - 1} \right) = \left( {1;1;1} \right) \Rightarrow C\left( {2;0;2} \right)\)

    \(\overrightarrow {AA'} = \overrightarrow {CC'} \Rightarrow \left( {{x_{A'}} - 1;{y_{A'}};{z_{A'}} - 1} \right) = \left( {2;5; - 7} \right) \Rightarrow A'\left( {3;5; - 6} \right)\)

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 68542

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • 40 câu trắc nghiệm chuyên đề Hình học Oxyz ôn thi THPT QG năm 2019

    40 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Cho A(2;0;0), B(0;2;0), C(0;0;2). Tập hợp các điểm M trên mặt phẳng Oxy sao cho \(\overrightarrow {MA} .
  • Cho điểm A(3;5;0) và mặt phẳng \(\left( P \right):2x + 3y - z - 7 = 0\).
  • Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và hai đi�
  • Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;-1;1), B(2;1;-2), C(0;0;1).
  • Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.ABCD có A(1;2;-1), C(3;-4;1), B(2;-1;3) và D(0;3;5).
  • Trong không gian với hệ tọa độ Oxyz, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và mặt phẳng \(\left( \alpha  \r
  • Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-3;7), B(0;4;-3) và C(4;2;5).
  • Tìm tọa độ điểm D biết tứ giác ABCD là hình bình hành có A(1;0;3), B(2;3;-4), C(-3;1;2)
  • Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.ABCD. Biết A(1;0;1), B(2;1;2), C(4;5;-5), D(1;-1;1).
  • Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;- 2;- 1) và B(1; - 1;2).
  • Trong không gian với hệ tọa độ Oxyz cho hai điểm \(M\left( {3;0;0} \right),\,N\left( {0;0;4} \right)\).
  • Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(2;6;- 3) và các mặt phẳng \(\left( \alpha  \right):x - 2 = 0,\,\left( \
  • Trong không gian với hệ tọa độ Oxyz, cho A(- 1;2;4), B(- 1;1;4), C(0;0;4). Tìm số đo của \(\widehat {ABC}\).
  • Trong không gian với hệ tọa độ Oxyz cho \(A\left( {1;2;0} \right),B\left( {3; - 1;1} \right)\) và C(1;1;1).
  • Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(- 1;2;1), B(0;0;- 2), C(1;0;1), D(2;1;- 1).
  • Cho mặt phẳng \(\left( \alpha  \right):2x - y + 3z - 1 = 0\).
  • Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng trung trực của đoạn AB với \(A\left( {1; - 2;3} \right),B
  • Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {2; - 1;3} \right),{\rm{ }}B\left( {2;0;5} \right),{\rm{ }}C\left( {0; - 3; -
  • Trong không gian với hệ trục tọa độ Oxyz, cho A(1;2;- 5). Gọi M, N, P là hình chiếu của A lên các trục Ox, Oy, Oz.
  • Trong không gian với hệ tọa độ Oxyz, cho \(A\left( {1;0;2} \right),B\left( {1;1;1} \right),C\left( {2;3;0} \right)\).
  • Trong không gian với hệ tọa độ Oxyz, cho điểm M(12;8;6).
  • Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x + y - 3z + 2 = 0\).
  • Trong không gian với hệ tọa độ Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y + 4z - 16 = 0\) và đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{z}{2}\) tìm mặt phẳng chứa d và tiếp xúc với mặt cầu (S)
  • Trong không gian với hệ tọa độ Oxyz, cho A(10;2 - 1) và đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{3}\).
  • Cho điểm M(2;1;- 1) và hai mặt phẳng \((P): x - y + z - 4 = 0, (Q):3x - y + z - 1 = 0\).
  • Cho điểm M(3;2;1).
  • Trong không gian với hệ tọa độ Oxyz, cho M(1;2;1). Viết phương trình mặt phẳng (P) qua M cắt trục Ox, Oy, OZ lần lượt tại A, B, C sao cho \(\frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) đạt giá trị nhỏ nhất.
  • Trong không gian với hệ tọa độ Oxyz cho G(1;2;3).Viết phương trình mặt phẳng (P) đi qua điểm G và cắt các trục tọa độ tại ba điểm phân biệt A, B, C sao cho G là trọng tam giác ABC.
  • Trong không gian với hệ tọa độ Oxyz cho điểm E(8;1;1).
  • Trong không gian với hệ toạ độ Oxyz, cho 2 điểm \(A\left( {1;2;1} \right),B\left( {3; - 1;5} \right)\).
  • Trong không gian với tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = y + 1 = z - 3\) và mặt phẳng \(\left( P \right):x +
  • Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left( {1;2;1} \right),B\left( {3;1;0} \right),C\left( {3; - 1;2} \right)\).
  • Cho hai đường thẳng \({d_1}:\frac{{x - 2}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{{z - 3}}{1};\,{d_2}:\left\{ \begin{array}{l}x = 1 - t\\y = 1 +
  • Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S) có phương trình: \({x^2} + {y^2} + {z^2} - 6x + 2y - 4z - 2 = 0\).
  • Trong không gian Oxyz, cho hai điểm \(M\left( {6;2; - 5} \right),N\left( { - 4;0;7} \right)\).
  • Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua hai điểm \(A\left( {1;1;2} \right),\,\,B\left( {3;0;1} \right)\) v�
  • Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên mặt phẳng (Oxy) và đi qua ba điểm A(1;2;- 4), B(1;-
  • Bán kính mặt cầu tâm I(4;2;- 1) và tiếp xúc với mặt phẳng \((\alpha ):12x - 5z - 19 = 0\).
  • Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới dây là phương trình mặt cầu có tâm I(1;2;- 1) và tiếp xúc v
  • Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \(\Delta :\frac{x}{1} = \frac{{y + 3
ADSENSE TRACNGHIEM Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 9 Lớp 12 Deserts

Tiếng Anh 12 mới Unit 4

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Ôn tập Hóa học 12 Chương 4

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 1 - Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Sinh

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

Quá trình văn học và phong cách văn học

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON tracnghiem.net QC Bỏ qua >>

Từ khóa » Trong Không Gian Với Hệ Tọa độ Oxyz Cho Hình Hộp Abcd.a'b'c'd'