Trong Không Gian Với Hệ Toa độ Oxyz, Lập Phương Trình đường Thẳng ...

YOMEDIA NONE Trong không gian với hệ toa độ Oxyz, lập phương trình đường thẳng đi qua điểm \(A\left( 0;\ -1;\ 3 \right)\) và vuông góc với mặt phẳng \(\left( P \right): x+3y-1=0\). ADMICRO
  • Câu hỏi:

    Trong không gian với hệ toa độ Oxyz, lập phương trình đường thẳng đi qua điểm \(A\left( 0;\ -1;\ 3 \right)\) và vuông góc với mặt phẳng \(\left( P \right): x+3y-1=0\).

    • A. \(\left\{ {\begin{array}{*{20}{c}} {x = t{\rm{ }}}\\ {y = - 1 + 2t}\\ {z = 3 + 2t{\rm{ }}} \end{array}} \right.\)
    • B. \(\left\{ {\begin{array}{*{20}{c}} {x = 1{\rm{ }}}\\ {y = 3 - t}\\ {z = 3{\rm{ }}} \end{array}} \right.\)
    • C. \(\left\{ {\begin{array}{*{20}{c}} {x = t{\rm{ }}}\\ {y = - 1 + 3t}\\ {z = 3 - t{\rm{ }}} \end{array}} \right.\)
    • D. \(\left\{ {\begin{array}{*{20}{c}} {x = t{\rm{ }}}\\ {y = - 1 + 3t}\\ {z = 3{\rm{ }}} \end{array}} \right.\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Ta có:Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến là \(\overrightarrow{n}=\left( 1;\ 3;\ 0 \right)\).

    Đường thẳng đi qua \(A\left( 0;\ -1;\ 3 \right)\) và vuông góc với mặt phẳng \(\left( P \right)\) có vectơ chỉ phương là \(\overrightarrow{n}=\left( 1;\ 3;\ 0 \right)\).

    Phương trình đường thẳng là: \(\left\{ {\begin{array}{*{20}{c}} {x = t{\rm{ }}}\\ {y = - 1 + 3t}\\ {z = 3{\rm{ }}} \end{array}} \right.\)

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 265081

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Trưng Vương lần 2

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Có bao nhiêu cách xếp 3 học sinh ngồi vào một dãy ghế hàng ngang gồm 4 chỗ ngồi?
  • Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{1}}=3\) và \({{u}_{2}}=8\). Giá trị của \({{u}_{7}}\) bằng
  • Cho hàm số \(f(x)\) có bàng biến thiên như sau ​ Hàm số đã cho đồng biến trên khoảng nào trong các khoảng dưới đây?
  • Cho hàm số \(f(x)\) có bàng biến thiên như sau Hàm số đạt cực đại tại điểm
  • Cho hàm số \(f(x)\) xác định trên \(\mathbb{R}\) và có bàng xét dấu của đạo hàm \(f^{\prime}(x)\) như sau ​ Hàm số \(f(x)\) có bao nhiêu điểm cực trị?
  • Tiệm cận đứng của đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) là đường thẳng
  • Hàm số nào dưới đây có đồ thị có dạng như đường cong trong hình vẽ?
  • Đồ thị hàm số \(y={{x}^{3}}-6{{x}^{2}}+9x-2\) cắt trục tung tại điểm có tung độ bằng
  • Với a, b là các số thực dương tùy ý, ta có \(\ln \left( {{a}^{2}}{{b}^{3}} \right)\) bằng
  • Đạo hàm của hàm số \(y = {2021^x}\) là
  • Với a là một số thực dương tùy ý, ta có \(\sqrt[5]{a^3}\) bằng
  • Phương trình \({2^{2x + 5}} = \frac{1}{8}\) có nghiệm là
  • Phương trình \({{\log }_{2}}\left( 3x+1 \right)=-4\) có tập nghiệm là
  • Họ nguyên hàm của hàm số \(f\left( x \right) = {x^4} - 6{x^2}\) là
  • Họ nguyên hàm của hàm số \(f\left( x \right) = \sin \left( {2x + 1} \right)\) là
  • Nếu \(\int\limits_{0}^{7}{f\left( x \right)\text{d}x}=18\) và \(\int\limits_{1}^{7}{f\left( x \right)\text{d}x}=9\) thì \(\int\limits_{0}^{1}{f\left( x \right)\text{d}x}\) bằng
  • Tính \(I = \int\limits_{ - 1}^1 {{x^{2020}}{\rm{d}}x} \)
  • Mô đun của số phức z = 6 - 2i bằng
  • Cho số phức z=4+5i. Số phức \(z+2\overline{z}\) bằng
  • Trên mặt phẳng tọa độ, điểm biểu diễn số phức 8-3i có tọa độ là
  • Hình chóp có diện tích đáy bằng \(6{{a}^{2}}\); thể tích khối chóp bằng \(30{{a}^{3}}\); chiều cao khối chóp bằng
  • Thể tích của khối chóp SABC có SA,AB,AC đôi một vuông góc và SA=5,AB=2,AC=3 là:
  • Công thức tính thể tích V của khối nón có bán kính 2r và chiều cao h là:
  • Một hình cầu có bán kính r=3cm khi đó diện tích mặt cầu là:
  • Trong không gian Oxyz cho tam giác OAB có \(A(1;2;3);\,\,B(2;1;3)\). Khi đó tọa độ trọng tâm tam giác OAB có tọa độ là
  • Trong không gian Oxyz, cho mặt cầu có phươg trình \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x+4y-6z+9=0\).
  • Trong không gian Oxyz, đường thẳng \(d:\frac{x-1}{3}=\frac{y+2}{-4}=\frac{z-3}{-5}\) đi qua điểm
  • Trong không gian Oxyz, mặt phẳng \(\left( P \right):x+2y-3z+3=0\) có một vectơ pháp tuyến là
  • Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.
  • Trong các hàm số sau, hàm số nào luôn nghịch biến trên \(\mathbb{R}\)?
  • Tích của giá trị nhỏ nhất và giá trị lớn nhất của hs \(f\left( x \right)=x+\frac{4}{x}\) trên đoạn \(\left[ 1;\text{ }3
  • Tập nghiệm của bất phương trình \({{\log }_{3}}\left( {{x}^{2}}+2 \right)\le 3\) là:
  • Cho \(\int\limits_{1}^{2}{f\left( {{x}^{2}}+1 \right)x\text{d}x=2}\). Khi đó \(I=\int\limits_{2}^{5}{f\left( x \right)}\text{d}x\) bằng:
  • Cho số phức \({{z}_{1}}=1+i\) và \({{z}_{2}}=2-3i\). Tìm số phức liên hợp của số phức \(w={{z}_{1}}+{{z}_{2}}\)?
  • Cho chóp S.ABCD có đáy là hình vuông, \(SA\bot \left( ABCD \right)\). Góc giữa đường SC và mặt phẳng \(\left( SAD \right)\) là góc?
  • Cho tứ diện ABCD có tất cả các cạnh đều bằng a \(\left( a>0 \right)\). Khi đó khoảng cách từ đỉnh A đến \(\text{mp}\left( BCD \right)\) bằng
  • Trong không gian với hệ trục tọa độ Oxyz, cho điểm \(I\left( 1;2;4 \right)\) và mặt phẳng \(\left( P \right):2x+2y+z-1=0\). Mặt cầu tâm I và tiếp xúc với mặt phẳng \(\left( P \right)\) có phương trình là:
  • Trong không gian với hệ toa độ Oxyz, lập phương trình đường thẳng đi qua điểm \(A\left( 0;\ -1;\ 3 \right)\) và vuông góc với mặt phẳng \(\left( P \right): x+3y-1=0\).
  • Cho hàm số \(y=f\left( x \right)\) có đồ thị \(y={f}'\left( x \right)\) là đường cong hình bên. ​ Giá trị nhỏ nhất của hàm số \(g\left( x \right)=f\left( {{x}^{2}}-2\text{x} \right)\) trên \(\left[ -\frac{3}{2}\,;\,\frac{7}{2} \right]\) là
  • Có bao nhiêu số nguyên dương y sao cho ứng với mỗi giá trị của y có không quá 5 số nguyên x thoả mãn bất phương trình \(\left( {{5}^{x}}-1 \right)\left( {{2.5}^{x}}-y \right)\le 0\).
  • Cho hàm số \(f\left( x \right)={{\left| x \right|}^{2021}}\). Giá trị của \(I=\int\limits_{0}^{\frac{\pi }{2}}{f\left( 2\cos x-1 \right)\sin x\text{d}x}\) bằng:
  • Cho hai số phức \({{z}_{1}},{{z}_{2}}\). Có bao nhiêu số phức \(z={{z}_{1}}-{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=2,\,{{z}_{1}}+{{z}_{2}}=2-2i\)?
  • Cho hình chóp đều S.ABCD có cạnh đáy bằng a. Gọi M, N lần lượt là trung điểm của các cạnh SA, CD. Biết góc giữa đường thẳng MN với mặt phẳng \(\left( SBD \right)\) bằng \({{30}^{{}^\circ }}\)(như hình vẽ). ​ Thể tích của khối chóp đều S.ABCD là:
  • Bác An có một khối cầu pha lê \(\left( S \right)\) có bán kính bằng \(5\,\,\text{cm}\). Bác muốn từ \(\left( S \right)\) làm một vật lưu niệm có hình dạng là một khối hộp chữ nhật nội tiếp \(\left( S \right)\). Bác An phải bỏ đi lượng thể tích pha lê bằng bao nhiêu để tạo ra vật lưu niệm có thể tích lớn nhất (tính gần đúng đến hàng phần trăm).
  • Trong mặt phẳng tọa độ Oxyz, cho mặt phẳng \(\left( \alpha \right):2x-y-2z-2=0\) và đường thẳng \(\left( d \right):\frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1}\). Biết mặt phẳng \(\left( P \right)\) chứa \(\left( d \right)\) và tạo với \(\left( \alpha \right)\) một góc nhỏ nhất có phương trình dạng ax+by+cz+3=0. Giá trị của T=a.b.c bằng:
  • Cho hàm số \(y=f\left( x \right)\) có đạo hàm \({f}'\left( x \right)\) xác định trên \(\mathbb{R}\). Đồ thị hàm số \(y={f}'\left( x \right)\) như hình vẽ dưới đây: Hỏi hàm số \(y=f\left( {{x}^{2}} \right)\) có bao nhiêu điểm cực đại và bao nhiêu điểm cực tiểu?
  • Có bao nhiêu cặp số nguyên \(\left( x;y \right)\) thoả mãn \(0\le x\le 2020\) và \({{\log }_{3}}\left( 3x+3 \right)+x=2y+{{9}^{y}}\)?
  • Cho hàm số \(y=f\left( x \right)=-\frac{1}{2}{{x}^{4}}+a{{x}^{2}}+b$$\left( a,b\in \mathbb{R} \right)\) có đồ thị và \(y=g\left( x \right)=m{{\text{x}}^{2}}+n\text{x}+p \left( m,n,p\in \mathbb{R} \right)\) có đồ thị \(\left( P \right)\) như hình vẽ. Diện tích hình phẳng giới hạn bởi \(\left( C \right)\) và \(\left( P \right)\) có giá trị nằm trong khoảng nào sau đây?
  • Cho số phức z thỏa mãn |z-2i| |z-4i| và \(\left| z-3-3i \right|=1\). Giá trị lớn nhất của biểu thức \(P=\left| z-2 \right|\) là:
  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu \(\left( {{S}_{1}} \right):\,{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}=16,\left( {{S}_{2}} \right):\,{{\left( x+4 \right)}^{2}}+{{y}^{2}}+{{z}^{2}}=36\) và điểm \(A\left( 4;0;0 \right)\). Đường thẳng \(\Delta \) di động nhưng luôn tiếp xúc với \(({{S}_{1}})\), đồng thời cắt \(\left( {{S}_{2}} \right)\) tại hai điểm \(B,\,\,C\). Tam giác ABC có thể có diện tích lớn nhất là bao nhiêu?
ADSENSE TRACNGHIEM Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 9 Lớp 12 Deserts

Tiếng Anh 12 mới Unit 4

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Ôn tập Hóa học 12 Chương 4

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 1 - Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Toán

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

Ai đã đặt tên cho dòng sông

Tây Tiến

Quá trình văn học và phong cách văn học

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON tracnghiem.net QC Bỏ qua >>

Từ khóa » Trong Không Gian Với Hệ Tọa độ Oxyz