Trong Không Gian Với Hệ Trục Tọa độ Oxyz Cho Hình Hộp ABCD.A'B'C ...

KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY Trong không gian với hệ trục tọa độ Oxyz cho hình hộp ABCD.A'B'C'D' biết A( 1;0;1 ) ;B( 2;1;2 ) D( 1 Trong không gian với hệ trục tọa độ Oxyz cho hình hộp ABCD.A'B'C'D' biết A( 1;0;1 ) ;B( 2;1;2 ) D( 1

Câu hỏi

Nhận biết

Trong không gian với hệ trục tọa độ \(Oxyz\), cho hình hộp \(ABCD.A'B'C'D'\) biết \(A\left( {1;0;1} \right)\), \(\;B\left( {2;1;2} \right)\), \(D\left( {1; - 1;1} \right)\) và \(C'(4;5; - 5)\). Khi đó, thể tích của hình hộp chữ nhật đó là:

A. \(V = 9\) B. \(V = 7\) C. \(V = 10\) D. \(V = 13\)

Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Cách làm:

Ta có \(\overrightarrow {AB} = (1;1;1),\overrightarrow {AD} = (0; - 1;0)\)

\(ABCD.A'B'C'D'\) là hình hộp \( \Rightarrow ABCD\) là hình bình hành.

Khi đó ta có \(\overrightarrow {AD} = \overrightarrow {BC} \)

Giả sử \(C(x;y;z)\) . Ta có: \(\overrightarrow {BC} = (x - 2;y - 1;z - 2)\) \(\overrightarrow {AD} = \overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 0\\y - 1 = - 1\\z - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 0\\z = 2\end{array} \right. \Rightarrow C(2;0;2)\)

Ta có \(\overrightarrow {AA'} = \overrightarrow {CC'} = \left( {2;5; - 7} \right),\left[ {\overrightarrow {AB} {\rm{,}}\overrightarrow {AD} } \right]{\rm{ = }}(1;0; - 1)\)

Theo công thức tính thể tích ta có\({V_{ABCD.A'B'C'D}} = \left| {\left[ {\overrightarrow {AB} {\rm{,}}\overrightarrow {AD} } \right]{\rm{.}}\overrightarrow {AA'} } \right| = \left| {1.2 + 0.5 + \left( { - 1} \right).\left( { - 7} \right)} \right| = 9\)

Chọn A

Ý kiến của bạn Hủy

Luyện tập

Câu hỏi liên quan

  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Tính Thể Tích Hình Hộp Trong Oxyz