Trọng Tâm Của Tứ Diện Là Gì? Cách Xác định Trọng Tâm Của Tứ Diện
Có thể bạn quan tâm
Trọng tâm của tứ diện là một điểm quan trọng cần chú ý trong các bài toán liên quan đến tứ diện. Vậy trọng tâm tứ diện là gì? Cách xác định trọng tâm của tứ diện? Các tính chất của trọng tâm?… Trong nội dung bài viết dưới đây, DINHNGHIA.VN sẽ giúp bạn tổng hợp kiến thức về chủ đề này nhé!
MỤC LỤC
Tìm hiểu trọng tâm của tứ diện là gì?
Định nghĩa trọng tâm tứ diện
Cho tứ diện \( ABCD \). Khi đó \( G \) là trọng tâm tứ diện \( ABCD \) khi và chỉ khi :
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=0\)
Mỗi tứ diện chỉ có duy nhất \( 1 \) trọng tâm.
Cách chứng minh trọng tâm tứ diện
Giả sử ngoài trọng tâm \( G \) còn tồn tại một điểm \( G’ \) cũng thỏa mãn tính chất :
\(\overrightarrow{G’A}+\overrightarrow{G’B}+\overrightarrow{G’C}+\overrightarrow{G’D}=0\)
Khi đó ta có:
\(0=\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}\)
\(=(\overrightarrow{GG’}+\overrightarrow{G’A})+(\overrightarrow{GG’}+\overrightarrow{G’B})+(\overrightarrow{GG’}+\overrightarrow{G’C})+(\overrightarrow{GG’}+\overrightarrow{G’D})\)
\(=4\overrightarrow{GG’}+(\overrightarrow{G’A}+\overrightarrow{G’B}+\overrightarrow{G’C}+\overrightarrow{G’D})\)
\(=4\overrightarrow{GG’}\)
\(\Rightarrow \overrightarrow{GG’} =0\)
\(\Rightarrow G \equiv G’\) hay tồn tại duy nhất điểm \( G \) thỏa mãn :
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=0\)
Cách vẽ trọng tâm của tứ diện ABCD
Ta có \( 2 \) cách vẽ trọng tâm tứ diện :
- Cách 1: Cho tứ diện \( ABCD \). Khi đó \( 3 \) đường thẳng nối trung điểm \( 3 \) cặp cạnh chéo nhau đồng quy tại trung điểm của mỗi đường. Điểm đó chính là trọng tâm tứ diện \( ABCD \)
Chứng minh:
Gọi \( M,N,P,Q \) lần lượt là trung điểm \( AB,BC,CD,DA \)
Khi đó ta có : \( MQ , NP \) lần lượt là đường trung bình của \( \Delta ABD \) và \( \Delta CBD \)
\(\Rightarrow MQ // NP\) ( cùng \( // BD \) )
\(\Rightarrow MQ=NP=\frac{BD}{2} \)
\(\Rightarrow MNPQ\)là hình bình hành
\(\Rightarrow MP \cap NQ\) tại trung điểm mỗi đường
Tương tự cho cặp cạnh chéo nhau còn lại.
Vậy ta có điều phải chứng minh (đpcm).
- Cách 2: Cho tứ diện \( ABCD \) có \( G \) là trọng tâm của \( \Delta BCD \). Trên đoạn thẳng \( AG \) lấy điểm \( K \) sao cho \( KA=3KG \). Khi đó điểm \( K \) chính là trọng tâm tứ diện \( ABCD \)
Chứng minh:
Ta có:
Vì \( G \) là trọng tâm \( \Delta BCD \Rightarrow \overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=0\)
\(\overrightarrow{KA}+\overrightarrow{KB}+\overrightarrow{KC}+\overrightarrow{KD}=\overrightarrow{KA}+(\overrightarrow{KG}+\overrightarrow{GB})+(\overrightarrow{KG}+\overrightarrow{GC})+(\overrightarrow{KG}+\overrightarrow{GD})\)
\(=\overrightarrow{KA}+3\overrightarrow{KG}+ (\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD})\)
\(=\overrightarrow{KA}+3\overrightarrow{KG}\)
Mặt khác, vì \(KA=3KG \Rightarrow \overrightarrow{KA}+3\overrightarrow{KG}=0\)
\( \Rightarrow \overrightarrow{KA}+\overrightarrow{KB}+\overrightarrow{KC}+\overrightarrow{KD}=0 \)
Vậy \( K \) là trọng tâm tứ diện \( ABCD \)
***Chú ý: Trong một số trường hợp tứ diện có tính chất đặc biệt thì ta sẽ có một số cách xác định riêng. Ví dụ xác định tâm của tứ diện đều bằng cách xác định giao của \( 4 \) đường cao hạ từ mỗi đỉnh xuống tam giác đáy đối diện của tứ diện.
Một số tính chất trọng tâm tứ diện
Cho tứ diện \( ABCD \) có \( G \) là trọng tâm tứ diện. Khi đó ta có các tính chất sau:
- \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=0\)
- \( G \) là trung điểm của đường nối \( 2 \) trung điểm \( 2 \) cạnh đối nhau bất kì trong tứ diện.
- \( G \) nằm trên đường nối một đỉnh của tứ diện với trọng tâm của tam giác đáy tương ứng sao cho khoảng cách từ \( G \) đến đỉnh bằng \( 3 \) lần khoảng cánh từ \( G \) đến trọng tâm tam giác đáy.
Bài tập liên quan đến trọng tâm tứ diện
Chứng minh 2 tứ diện có cùng trọng tâm
Cho tứ diện \( ABCD \) và tứ diện \( A’B’C’D’ \). Gọi \( G \) là trọng tâm tứ diện \( ABCD \). Khi đó \( G \) cũng là trọng tâm tứ diện \( A’B’C’D’ \) khi và chỉ khi :
\(\overrightarrow{AA’}+\overrightarrow{BB’}+\overrightarrow{CC’}+\overrightarrow{DD’}=0\)
Chứng minh:
Ta có:
\(\overrightarrow{AA’}+\overrightarrow{BB’}+\overrightarrow{CC’}+\overrightarrow{DD’}=(\overrightarrow{AG}+\overrightarrow{GA’})+(\overrightarrow{BG}+\overrightarrow{GB’})+(\overrightarrow{CG}+\overrightarrow{GC’})+(\overrightarrow{DG}+\overrightarrow{GD’})\)
\(=(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}+\overrightarrow{DG})+(\overrightarrow{GA’}+\overrightarrow{GB’}+\overrightarrow{GC’}+\overrightarrow{GD’})\)
\(=\overrightarrow{GA’}+\overrightarrow{GB’}+\overrightarrow{GC’}+\overrightarrow{GD’}\)
Vậy: \(\overrightarrow{AA’}+\overrightarrow{BB’}+\overrightarrow{CC’}+\overrightarrow{DD’}=0\Leftrightarrow \overrightarrow{GA’}+\overrightarrow{GB’}+\overrightarrow{GC’}+\overrightarrow{GD’}=0\)
Ta có đpcm.
Ví dụ:
Cho tứ diện \( ABCD \). Gọi \( M,N,P,Q \) là trọng tâm của \( 4 \) mặt tứ diện. Chứng minh rằng hai tứ diện \( ABCD \) và \( MNPQ \) có cùng trọng tâm
Cách giải:
Ta có:
\(\overrightarrow{AM}= \overrightarrow{AD}+\overrightarrow{DM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AC}+\overrightarrow{CM}\)
\(=\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}}{3}\) ( do \(\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=0\) )
Tương tự ta có:
\(\overrightarrow{BN}=\frac{\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BD}}{3}\)
\(\overrightarrow{CP}=\frac{\overrightarrow{CA}+\overrightarrow{CB}+\overrightarrow{CD}}{3}\)
\(\overrightarrow{DQ}=\frac{\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}}{3}\)
Cộng hai vế của \( 4 \) đẳng thức trên ta được:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}+\overrightarrow{DQ}=0\)
Theo tính chất trên \(\Rightarrow ABCD\) và \( MNPQ \) có cùng trọng tâm
Bài toán trọng tâm của các tứ diện đặc biệt
- Tứ diện vuông là tứ diện có một đỉnh mà \( 3 \) cạnh xuất phát từ đỉnh đó đôi một vuông góc với nhau.
- Tứ diện đều là tứ diện có tất cả các cạnh bằng nhau.
- Tứ diện gần đều là tứ diện có các cặp cạnh đối bằng nhau.
- Tứ diện trực tâm là tứ diện có các cặp cạnh đối đôi một vuông góc với nhau.
Ví dụ:
Cho \( G \) là trọng tâm của tứ diện vuông \( OABC \) ( vuông tại \( O \) ). Biết rằng \( OA=OB=OC=a \). Tính độ dài \( OG \)
Cách giải:
Vì \( OA=OB=OC =a \) và \(\widehat{AOC}=\widehat{COB}=\widehat{BOA}=90^{\circ}\)
Nên theo định lý Pitago ta có :
\(AB=BC=CA=a\sqrt{2}\)
\(\Rightarrow \Delta ABC\) đều.
Gọi \( H \) là tâm \(\Rightarrow \Delta ABC\)
Theo tính chất trọng tâm \(\Rightarrow G \in OH\) và \(\Rightarrow OG=\frac{3}{4}OH\)
Do \( \Delta ABC \) đều có độ dài cạnh bằng \( a\sqrt{2}\) nên \(\Rightarrow\) độ dài đường cao của \( \Delta ABC \) là : \(a\sqrt{2}.\frac{\sqrt{3}}{2}=\frac{a\sqrt{6}}{2}\)
\(\Rightarrow BH =\frac{2}{3}.\frac{a\sqrt{6}}{2}=\frac{a\sqrt{6}}{3}\)
Theo tính chất tứ diện vuông thì \( OH \bot ( ABC) \)
\(\Rightarrow OH =\sqrt{OB^2-BH^2}=\frac{a}{\sqrt{3}}\)
\( \Rightarrow OG = \frac{3}{4} OH =\frac{a\sqrt{3}}{4} \)
Bài viết trên đây của DINHNGHIA.VN đã giúp bạn tổng hợp lý thuyết và một số dạng bài tập về trọng tâm của tứ diện. Hy vọng những kiến thức trong bài viết sẽ giúp ích cho bạn trong quá trình học tập và nghiên cứu chủ đề trọng tâm của tứ diện. Chúc bạn luôn học tốt!
Xem thêm >>> Thể tích tứ diện đều: Khái niệm, Công thức tính nhanh thể tích tứ diện đều
Xem thêm >>> Viết phương trình tham số của đường thẳng, đường tròn, mặt phẳng
4.8/5 - (6 bình chọn) Please follow and like us:Từ khóa » Trọng Tâm Của Hình Tứ Giác
-
Trọng Tâm Là Gì? Các Tính Chất Của Trọng Tâm Tam Giác, Hình Thang, Tứ ...
-
Cách Xác định Trọng Tâm Tứ Giác - Blog Của Thư
-
Trọng Tâm Tứ Giác | Cộng đồng Học Sinh Việt Nam - HOCMAI Forum
-
Cho Tứ Giác ABCD. Chứng Minh Rằng. Bài 28 Trang 24 SGK Hình Học ...
-
Thuật Toán Tìm Trọng Tâm Của Tứ Giác - Programming - Dạy Nhau Học
-
Trọng Tâm Của Tứ Diện Là Gì? - Toán Học Việt Nam - MathVn.Com
-
Cách Xác định Trọng Tâm Của Tứ Giác
-
Trọng Tâm Là Gì? Công Thức Tính Trọng Tâm Của Tam Giác
-
Trọng Tâm Là Gì? Cách Xác định Trọng Tâm Và Bài Tập Có Giải
-
Trọng Tâm Của Tứ Diện Là Gì?
-
Tính Chất Của Trọng Tâm Và Cách Xác định Trọng Tâm Trong Hình Học
-
Cách Xác định Trọng Tâm Của Một đa Giác Lồi - Huỳnh Phú Sĩ
-
Trọng Tâm Tam Giác: Khái Niệm, Tính Chất Và Cách Xác định - Thợ Sửa Xe
-
Trọng Tâm Là Gì? Tính Chất Trọng Tâm Tam Giác