Viết Phương Trình Mặt Cầu Trong Không Gian Oxyz: Lý Thuyết Và Bài Tập

Số lượt đọc bài viết: 210.070

Cách viết phương trình mặt cầu trong không gian Oxyz là chủ đề quan trọng trong chương trình toán học 12. Trong nội dung bài viết dưới đây, hãy cùng DINHNGHIA.VN tìm hiểu về cách viết phương trình mặt cầu trong không gian cũng như các dạng bài tập về viết phương trình mặt cầu, cùng tìm hiểu nhé!. 

MỤC LỤC

  • Định nghĩa mặt cầu là gì? Lý thuyết phương trình mặt cầu
    • Khái niệm mặt cầu là gì?
    • Các dạng phương trình mặt cầu
  • Cách viết phương trình mặt cầu trong không gian Oxyz
    • Vị trí tương đối của mặt phẳng và mặt cầu
    • Vị trí tương đối giữa đường thẳng và mặt cầu
  • Các dạng bài tập về viết phương trình mặt cầu
    • Dạng 1: Viết phương trình mặt cầu biết tâm và bán kính
    • Dạng 2: Viết phương trình mặt cầu (S) có đường kính AB cho trước
    • Dạng 3: Viết mặt cầu (S) qua 3 điểm A, B, C và có tâm thuộc mặt phẳng (P) cho trước.

Định nghĩa mặt cầu là gì? Lý thuyết phương trình mặt cầu

Khái niệm mặt cầu là gì?

Mặt cầu được định nghĩa khi với điểm O cố định cùng với một số thực dương R. Khi đó thì tập hợp tất cả những điểm M trong không gian cách O một khoảng R sẽ được gọi là mặt cầu tâm O và bán kính R. Ký hiệu: S(O;R)

phương trình mặt cầu

Các dạng phương trình mặt cầu

các dạng phương trình mặt cầu

Cách viết phương trình mặt cầu trong không gian Oxyz

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu I(a, b, c) bán kính R. Khi đó phương trình mặt cầu tâm I(a,b,c) bán kính R có dạng là: \((x-a)^{2}+(b-y)^{2})+(c-z)^{2}= R^{2}\)

Hoặc: \(x^{2}+y^{2}+z^{2}-2ax-2cz+d=0\) với \(a^{2}+b^{2}+c^{2}> d\)

cách viết phương trình mặt cầu trong không gian

Vị trí tương đối của mặt phẳng và mặt cầu

Cho mặt cầu (S): \((x-a)^{2}+(b-y)^{2})+(c-z)^{2}= R^{2}\) có tâm I, bán kính R và mặt phẳng (P): Ax+By+Cz+D=0

Ta có khoảng cách d từ mặt cầu (S) đến mặt phẳng (P):  

  • d > R: mặt phẳng (P) và mặt cầu (S) không có điểm chung.
  • d = R: mặt phẳng (P) và mặt cầu (S) tiếp xúc tại H.
  • d < R: mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có tâm K là hình chiếu của I trên (P) và bán kính \(r = \sqrt{R^{2} – d ^{2}}\).

Điểm H được gọi là tiếp điểm.

Mặt phẳng (P) được gọi là tiếp diện.

Xem thêm >>>: Viết phương trình mặt phẳng trong không gian

Vị trí tương đối giữa đường thẳng và mặt cầu

lý thuyết viết phương trình mặt cầu trong không gian

Cho mặt cầu (S): \((x-a)^{2}+(b-y)^{2})+(c-z)^{2}= R^{2}\) có tâm I, bán kính R và đường thẳng \(\Delta\)

Ta có khoảng cách d từ mặt cầu (S) đến đường thẳng \(\Delta\):

  • d > R: Đường thẳng \(\Delta\) không cắt mặt cầu (S)
  • d = R: Đường thẳng \(\Delta\) tiếp xúc với mặt cầu (S)
  • d < R: Đường thẳng \(\Delta\) cắt mặt cầu (S) theo dây cung \(AB = \sqrt{R^{2} – d^{2}}\)

Xem thêm >>> Viết phương trình đường thẳng trong không gian Oxyz

Các dạng bài tập về viết phương trình mặt cầu

Dạng 1: Viết phương trình mặt cầu biết tâm và bán kính

bài tập về mặt cầu

một số mặt cầu thường gặp

Viết phương trình mặt cầu (S) có tâm \(I (x_{0}, y_{0}, z_{0})\) và bán kính R.

Thay tọa độ I và bán kính R vào phương trình, ta có:

(S): \((x – x_{0})^{2} + (y – y_{0})^{2} + (z – z_{0})^{2} = R^{2}\)

Ví dụ 2: Viết phương trình mặt cầu (S) có tâm I(3; -5; -2) và bán kính R = 5

Cách giải

Thay tọa độ của tâm I và bán kính R ta có phương trình mặt cầu (S):

\((x – 3)^{2} + (y – (-5))^{2} + (z – (-2))^{2} = 5^{2} \Leftrightarrow (x – 3)^{2} + (y + 5)^{2} + (z + 2)^{2} = 25\)

một số dạng mặt cầu điển hình

Dạng 2: Viết phương trình mặt cầu (S) có đường kính AB cho trước

  • Tìm trung điểm của AB. Vì AB là đường kính nên I là tâm trung điểm AB đồng thời là tâm của mặt cầu.
  • Tính độ dài IA = R.
  • Làm tiếp như bài toán dạng 1.

Ví dụ 2: Lập phương trình mặt cầu (S) có đường kính AB với A(4; −3; 7) và B(2; 1; 3)

Cách giải

Gọi I là trung điểm của AB, thì mặt cầu (S) có tâm I và bán kính.

\(r = \frac{AB}{2} = IA = IB\)

Ta có: Vì I là trung điểm của AB nên I có tọa độ \(I(\frac{4+2}{2};\frac{-3+1}{2};\frac{7+3}{2}) \Rightarrow I(3; -1; 5)\)

\(\Rightarrow \vec{IA} = (1; -2; 2)\)

\(\Rightarrow R = \left | \vec{IA} \right | = \sqrt{1^{2} + (-2)^{2} + 2^{2}} = 3\)

Thay tọa độ của tâm I và bán kính R ta có phương trình mặt cầu (S):

\((x – 3)^{2} + (y – (-1))^{2} + (z – 5)^{2} = 3^{2} \Leftrightarrow (x – 3)^{2} + (y + 1)^{2} + (z – 5)^{2} = 9\)

Dạng 3: Viết mặt cầu (S) qua 3 điểm A, B, C và có tâm thuộc mặt phẳng (P) cho trước.

  • Gọi I (a, b, c) là tâm mặt cầu (S) thuộc mặt phẳng (P)
  • Ta có hệ phương trình \([\left\{\begin{matrix} IA = IB & \\ IA = IC & \\ I \epsilon (P) & \end{matrix}\right.\)
  • Giải hệ phương trình tìm được a, b, c sau đó thay vào 1 trong 2 phương trình trên để tìm bán kính mặt cầu.

Ví dụ 3: Viết phương trình mặt cầu (S) đi qua 3 điểm A (2;0;1), B (1;0;0), C (1;1;1) và có tâm thuộc mặt phẳng (P): x + y + z – 2 = 0.

Cách giải

Gọi phương trình tổng quát (S): \(x^{2} + y^{2} + z^{2} + 2ax + 2by + 2cz + d = 0\) với \(a^{2} + b^{2} + c^{2} > d\) (1)

Mặt cầu (S) có tâm \(I (-a;-b;-c)\)

Từ đó ta có hệ phương trình:

\(\left\{\begin{matrix} 4 + 1 + 4a + 2c + d = 0 & \\ 1 + 2c + d = 0 & \\ 3 + 2a + 2b + 2c + d = 0 & \\ -a -b -c -2 = 0 & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 4a + 2c + d = -5 & \\ 2c + d = -1 & \\ 2a + 2b + 2c + d = -3 & \\ a + b +b c = -2 & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a = -1 & \\ b = 0 & \\ c = -1 & \\ d = 1 & \end{matrix}\right.\)

Vậy mặt cầu (S) có phương trình: \(x^{2} + y^{2} + z^{2} + 1 = 0\)

Trên đây là bài tổng hợp kiến thức về viết phương trình mặt cầu trong không gian cũng như các dạng bài tập viết phương trình mặt cầu. Cảm ơn các bạn đã đón đọc. Nếu có góp ý và thắc mắc hãy bình luận bên dưới để chúng mình giải đáp nhé <3

Xem chi tiết qua bài giảng bên dưới:

(Nguồn: www.youtube.com)

Xem thêm:

  • Viết phương trình đường tròn trong không gian Oxyz
  • Chuyên đề phương pháp tọa độ trong không gian: Lý thuyết và Bài tập
4.7/5 - (4 bình chọn) Please follow and like us:errorfb-share-icon Tweet fb-share-icon

Từ khóa » Tìm R Của Mặt Cầu