[] - Các Bất đẳng Thức Cơ Bản Cần Nhớ áp Dụng Trong Các Bài ...
Có thể bạn quan tâm
-
Bất đẳng thức có được từ hằng đẳng thức dạng ${{(a-b)}^{2}}\ge 0$
- ${{a}^{2}}+{{b}^{2}}\ge 2ab;ab\le {{\left( \frac{a+b}{2} \right)}^{2}};{{a}^{2}}+{{b}^{2}}\ge \frac{1}{2}{{(a+b)}^{2}}.$ Dấu bằng xảy ra khi và chỉ khi $a=b.$
- ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}\ge ab+bc+ca.$ Dấu bằng xảy ra khi và chỉ khi $a=b=c.$
- ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}\ge \frac{1}{3}{{(a+b+c)}^{2}}.$ Dấu bằng xảy ra khi và chỉ khi $a=b=c.$
- ${{(a+b+c)}^{2}}\ge 3(ab+bc+ca).$ Dấu bằng xảy ra khi và chỉ khi $a=b=c.$
-
Bất đẳng thức với hai căn thức cơ bản
- $\sqrt{a}+\sqrt{b}\ge \sqrt{a+b}.$ Dấu bằng xảy ra khi và chỉ khi $a=0$ hoặc $b=0.$
- $\sqrt{a}+\sqrt{b}\le \sqrt{2(a+b)}.$ Dấu bằng xảy ra khi và chỉ khi $a=b.$
Ví dụ 1:Cho hai số thực $x,y$ thoả mãn $x+y=2\left( \sqrt{x-3}+\sqrt{y+3} \right).$ Tìm giá trị nhỏ nhất của biểu thức $P=4({{x}^{2}}+{{y}^{2}})+15xy.$
A. $\min P=-80.$ | B. $\min P=-91.$ | C. $\min P=-83.$ | D. $\min P=-63.$ |
Giải.Ta có $x+y=2\left( \sqrt{x-3}+\sqrt{y+3} \right)\ge 2\sqrt{(x-3)+(y+3)}=2\sqrt{x+y}.$ Suy ra $x+y=0$ hoặc $x+y\ge 4.$
Và $x+y=2\left( \sqrt{x-3}+\sqrt{y+3} \right)\le 2\sqrt{\left( 1+1 \right)\left( x-3+y+3 \right)}=2\sqrt{2(x+y)}\Rightarrow x+y\le 8.$
- Nếu $x+y=0\Leftrightarrow x=3;y=-3\Rightarrow P=-63.$
- Nếu $x+y\in [4;8],$ xuất phát từ điều kiện xác định căn thức ta có: \[(x-3)(y+3)\ge 0\Rightarrow xy\ge 3(y-x)+9.\]
Suy ra
\[\begin{array}{c} P = 4{x^2} + 4{y^2} + 15xy = 4{(x + y)^2} + 7xy \ge 4{(x + y)^2} + 7\left[ {3(y - x) + 9} \right]\\ = \left[ {4{{(x + y)}^2} - 21(x + y)} \right] + \left( {42y + 63} \right)\\ \ge \left( {{{4.4}^2} - 21.4} \right) + \left( {42.( - 3) + 63} \right) = - 83. \end{array}\]
Dấu bằng đạt tại $x=7,y=-3.$ Đối chiếu hai trường hợp ta Chọn đáp án C.
*Chú ý: Hàm số $y=4{{t}^{2}}-21t$ đồng biến trên đoạn $[4;8]$ nên ta có đánh giá $4{{(x+y)}^{2}}-21(x+y)\ge {{4.4}^{2}}-21.4.$
-
Bất đẳng thức AM – GM (Sách giáo khoa việt nam gọi là bất đẳng thức Côsi)
- Với hai số thực không âm ta có $a+b\ge 2\sqrt{ab}.$ Dấu bằng xảy ra khi và chỉ khi $a=b.$
- Với ba số thực không âm ta có $a+b+c\ge 3\sqrt[3]{abc}.$ Dấu bằng xảy ra khi và chỉ khi $a=b=c.$
- Với $n$ thực không âm ta có ${{a}_{1}}+{{a}_{2}}+...+{{a}_{n}}\ge n\sqrt[n]{{{a}_{1}}{{a}_{2}}...{{a}_{n}}}.$ Dấu bằng xảy ra khi và chỉ khi ${{a}_{1}}={{a}_{2}}=...={{a}_{n}}.$
Ví dụ 1:Cho $a>0;b>0$ thoả mãn ${{\log }_{2a+2b+1}}(4{{a}^{2}}+{{b}^{2}}+1)+{{\log }_{4ab+1}}(2a+2b+1)=2.$ Giá trị biểu thức $a+2b$ bằng
A. $\frac{3}{2}.$ | B. $5.$ | C. $4.$ | D. $\frac{15}{4}.$ |
Giải. Chú ý ${{\log }_{a}}b=\dfrac{\ln b}{\ln a}.$ Vậy $\dfrac{\ln \left( 4{{a}^{2}}+{{b}^{2}}+1 \right)}{\ln \left( 2a+2b+1 \right)}+\dfrac{\ln \left( 2a+2b+1 \right)}{\ln \left( 4ab+1 \right)}=2.$
Sử dụng AM – GM có
$\dfrac{\ln \left( 4{{a}^{2}}+{{b}^{2}}+1 \right)}{\ln \left( 2a+2b+1 \right)}+\dfrac{\ln \left( 2a+2b+1 \right)}{\ln \left( 4ab+1 \right)}\ge 2\sqrt{\dfrac{\ln (4{{a}^{2}}+{{b}^{2}}+1)}{\ln (4ab+1)}}.$
Mặt khác $4{{a}^{2}}+{{b}^{2}}\ge 2\sqrt{4{{a}^{2}}.{{b}^{2}}}=4ab\Rightarrow 4{{a}^{2}}+{{b}^{2}}+1\ge 4ab+1\Rightarrow \dfrac{\ln (4{{a}^{2}}+{{b}^{2}}+1)}{\ln \left( 4ab+1 \right)}\ge 1.$
Do đó dấu bằng phải xảy ra tức \[\left\{ \begin{array}{l} 2a = b\\ \frac{{\ln \left( {2a + 2b + 1} \right)}}{{\ln \left( {4ab + 1} \right)}} = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \ln (6a + 1) = \ln (8{a^2} + 1)\\ b = 2a \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = \frac{3}{4}\\ b = \frac{3}{2} \end{array} \right..\]
Do đó $a+2b=\frac{3}{4}+3=\frac{15}{4}.$ Chọn đáp án D.
Ví dụ 2:Cho các số thực dương $x,y,z.$ Biết giá trị nhỏ nhất của biểu thức $P=\dfrac{{{x}^{2}}}{y}+\dfrac{{{y}^{2}}}{4z}+\dfrac{{{z}^{2}}}{x}+\dfrac{175\sqrt{{{x}^{2}}+9}}{4(x+1)}$ là $\dfrac{a}{b}$ với $a,b$ là các số nguyên dương và $\frac{a}{b}$ tối giản. Tính $S=a+b.$
A. $S=52.$ | B. $S=207.$ | C. $S=103.$ | D. $S=205.$ |
Giải.Ta đánh giá ba số hạng đầu để mất biến y và z bằng cách sử dụng bất đẳng thức AM – GM ta có
$\dfrac{{{z}^{2}}}{x}+\dfrac{{{y}^{2}}}{8z}+\dfrac{{{y}^{2}}}{8z}+\dfrac{{{x}^{2}}}{4y}+\dfrac{{{x}^{2}}}{4y}+\dfrac{{{x}^{2}}}{4y}+\dfrac{{{x}^{2}}}{4y}\ge 7\sqrt[7]{\dfrac{{{z}^{2}}}{x}{{\left( \dfrac{{{y}^{2}}}{8z} \right)}^{2}}{{\left( \dfrac{{{x}^{2}}}{4y} \right)}^{4}}}=\dfrac{7x}{4}.$
Vậy $P\ge f(x)=\dfrac{7x}{4}+\dfrac{175\sqrt{{{x}^{2}}+9}}{4(x+1)}\ge \underset{(0;+\infty )}{\mathop{\min }}\,f(x)=f(4)=\dfrac{203}{4}.$ Chọn đáp án B.
Dấu bằng đạt tại $\left\{ \begin{align}&\dfrac{{{z}^{2}}}{x}=\dfrac{{{y}^{2}}}{8z}=\dfrac{{{x}^{2}}}{4y}, \\ & x=4 \\ \end{align} \right.\Leftrightarrow (x;y;z)=(4;4;2).$
Ví dụ 3.Cho các số thực $a,b,c$ lớn hơn $1$ thoả mãn ${{\log }_{a}}bc+{{\log }_{b}}ca+4{{\log }_{c}}ab=10.$ Tính giá trị biểu thức $P={{\log }_{a}}b+{{\log }_{b}}c+{{\log }_{c}}a.$
A. $P=5.$ | B. $P=\frac{7}{2}.$ | C. $P=\frac{21}{4}.$ | D. $P=\frac{9}{2}.$ |
Giải. Chú ý biến đổi logarit ${{\log }_{a}}xy={{\log }_{a}}x+{{\log }_{a}}y(x>0,y>0),0<a\ne 1.$
Vậy đẳng thức giả thiết tương đương với:
\[\begin{array}{l} {\log _a}b + {\log _a}c + {\log _b}c + {\log _b}a + 4\left( {{{\log }_c}a + {{\log }_c}b} \right) = 10\\ \Leftrightarrow \left( {{{\log }_a}b + {{\log }_b}a} \right) + \left( {{{\log }_b}c + 4{{\log }_c}b} \right) + \left( {4{{\log }_c}a + {{\log }_a}c} \right) = 10. \end{array}\]
Do $a,b,c$ lớn hơn $1$ nên ${{\log }_{a}}b>0;{{\log }_{b}}c>0;{{\log }_{c}}a>0$ và để ý tính chất ${{\log }_{x}}y.{{\log }_{y}}x=1\left( 0<x,y\ne 1 \right)$
Sử dụng bất đẳng thức AM – GM ta có:
\[\begin{array}{l} {\log _a}b + {\log _b}a \ge 2\sqrt {{{\log }_a}b.{{\log }_b}a} = 2\\ {\log _b}c + 4{\log _c}b \ge 2\sqrt {{{\log }_b}c.4{{\log }_c}b} = 4\\ 4{\log _c}a + {\log _a}c \ge 2\sqrt {4{{\log }_c}a.{{\log }_a}c} = 4 \end{array}\]
Cộng lại theo vế ta có: \[\left( {{\log }_{a}}b+{{\log }_{b}}a \right)+\left( {{\log }_{b}}c+4{{\log }_{c}}b \right)+\left( 4{{\log }_{c}}a+{{\log }_{a}}c \right)\ge 10.\]
Điều đó chứng tỏ phải xảy ra dấu bằng trong các bất đẳng thức AM – GM
Dấu bằng đạt tại \[\left\{ \begin{array}{l} {\log _a}b = {\log _b}a = 1\\ {\log _b}c = 4{\log _c}b = 2\\ 4{\log _c}a = {\log _a}c = 2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {\log _a}b = 1\\ {\log _b}c = 2\\ {\log _c}a = \frac{1}{2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a = b\\ c = {b^2}\\ a = \sqrt c \end{array} \right. \Leftrightarrow a = b,c = {b^2}.\] Chọn đáp án B.
Ví dụ 4.Có tất cả bao nhiêu bộ ba số thực $(x;y;z)$ thoả mãn đồng thời các điều kiện dưới đây
\[{{2}^{\sqrt[3]{{{x}^{2}}}}}{{.4}^{\sqrt[3]{{{y}^{2}}}}}{{.16}^{\sqrt[3]{{{z}^{2}}}}}=128\] và ${{\left( x{{y}^{2}}+{{z}^{4}} \right)}^{2}}=4+{{\left( x{{y}^{2}}-{{z}^{4}} \right)}^{2}}.$
A. $8.$ | B. $4.$ | C. $3.$ | D. $2.$ |
Giải. Ta có \[{{2}^{\sqrt[3]{{{x}^{2}}}}}{{.4}^{\sqrt[3]{{{y}^{2}}}}}{{.16}^{\sqrt[3]{{{z}^{2}}}}}=128\Leftrightarrow {{2}^{\sqrt[3]{{{x}^{2}}}+2\sqrt[3]{{{y}^{2}}}+4\sqrt[3]{{{z}^{2}}}}}={{2}^{7}}\Leftrightarrow \sqrt[3]{{{x}^{2}}}+2\sqrt[3]{{{y}^{2}}}+4\sqrt[3]{{{z}^{2}}}=7.\]
Khai thác điều kiện số 2, ta có
\[{{x}^{2}}{{y}^{4}}+2x{{y}^{2}}{{z}^{4}}+{{z}^{8}}=4+{{x}^{2}}{{y}^{4}}-2x{{y}^{2}}{{z}^{4}}+{{z}^{8}}\Leftrightarrow x{{y}^{2}}{{z}^{4}}=1.\]
Mặt khác theo bất đẳng thức AM – GM cho 7 số thực dương ta có
\[\sqrt[3]{{{x}^{2}}}+2\sqrt[3]{{{y}^{2}}}+4\sqrt[3]{{{z}^{2}}}\ge 7\sqrt[7]{\sqrt[3]{{{x}^{2}}}{{\left( \sqrt[3]{{{y}^{2}}} \right)}^{2}}{{\left( \sqrt[3]{{{z}^{2}}} \right)}^{4}}}=7\sqrt[7]{\sqrt[3]{{{x}^{2}}{{y}^{4}}{{z}^{8}}}}=7\sqrt[7]{\sqrt[3]{{{\left( x{{y}^{2}}{{z}^{4}} \right)}^{2}}}}=7.\]
Do đó dấu bằng phải xảy ra tức \[\left\{ \begin{array}{l} \sqrt[3]{{{x^2}}} = \sqrt[3]{{{y^2}}} = \sqrt[3]{{{z^2}}} = 1\\ x{y^2}{z^4} = 1 \end{array} \right. \Leftrightarrow x = 1;y,z \in \left\{ { - 1;1} \right\}.\]
Mỗi số $y,z$ có 2 cách vậy có tất cả ${{1.2}^{2}}=4$ bộ số thực thoả mãn. Chọn đáp án B.
-
Bất đẳng thức Cauchy – Schwarz (Sách giáo khoa việt nam gọi là bất đẳng thức Bunhiacopsky)
- Ta luôn có $({{a}^{2}}+{{b}^{2}})({{x}^{2}}+{{y}^{2}})\ge {{(ax+by)}^{2}}.$ Dấu bằng xảy ra khi và chỉ khi $\frac{a}{x}=\frac{b}{y}.$
Ta hay sử dụng: $-\sqrt{({{a}^{2}}+{{b}^{2}})({{x}^{2}}+{{y}^{2}})}\le ax+by\le \sqrt{({{a}^{2}}+{{b}^{2}})({{x}^{2}}+{{y}^{2}})}.$
Dấu bằng bên phải đạt tại $\frac{a}{x}=\frac{b}{y}=k>0;$ dấu bằng bên trái đạt tại $\frac{a}{x}=\frac{b}{y}=k<0.$
- Ta luôn có $({{a}^{2}}+{{b}^{2}}+{{c}^{2}})({{x}^{2}}+{{y}^{2}}+{{z}^{2}})\ge {{(ax+by+cz)}^{2}}.$ Dấu bằng xảy ra khi và chỉ khi $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}.$
- Ta luôn có $(a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2})(x_{1}^{2}+x_{2}^{2}+...+x_{n}^{2})\ge {{({{a}_{1}}{{x}_{1}}+{{a}_{2}}{{x}_{2}}+...+{{a}_{n}}{{x}_{n}})}^{2}}.$ Dấu bằng xảy ra khi và chỉ khi $\frac{{{a}_{1}}}{{{x}_{1}}}=\frac{{{a}_{2}}}{{{x}_{2}}}=...=\frac{{{a}_{n}}}{{{x}_{n}}}.$
Ví dụ 1:Cho hai số thực $x,y$ thoả mãn ${{x}^{2}}+{{y}^{2}}\le 2x+3y.$ Giá trị lớn nhất của biểu thức $2x+y$ bằng
A. $\frac{19+\sqrt{19}}{2}.$ | B. $\frac{7+\sqrt{65}}{2}.$ | C. $\frac{11+10\sqrt{2}}{3}.$ | D. $\frac{7-\sqrt{10}}{2}.$ |
Giải. Ta có biến đổi giả thiết: ${{x}^{2}}-2x+{{y}^{2}}-3y\le 0\Leftrightarrow {{(x-1)}^{2}}+{{\left( y-\frac{3}{2} \right)}^{2}}\le \frac{13}{4}.$
Khi đó $2x+y=2(x-1)+\left( y-\frac{3}{2} \right)+\frac{7}{2}\le \sqrt{\left( {{2}^{2}}+{{1}^{2}} \right)\left( {{(x-1)}^{2}}+{{\left( y-\frac{3}{2} \right)}^{2}} \right)}+\frac{7}{2}\le \sqrt{5.\frac{13}{4}}+\frac{7}{2}=\frac{7+\sqrt{65}}{2}.$
Dấu bằng đạt tại \(\left\{ \begin{array}{l} \frac{{x - 1}}{2} = \frac{{y - \frac{3}{2}}}{1} = k>0\\ 2x + y = \frac{{7 + \sqrt {65} }}{2} \end{array} \right. \Leftrightarrow x = \frac{{5 + \sqrt {65} }}{5};y = \frac{{15 + \sqrt {65} }}{{10}}.\) Chọn đáp án B.
Ví dụ 2: Cho các số thực $x,y,z$ thoả mãn ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-12\le 0.$ Giá trị lớn nhất của biểu thức $2x+3y-2z$ bằng
A. $17.$ | B. $25.$ | C. $21.$ | D. $24.$ |
Giải. Biến đổi giả thiết có ${{(x-2)}^{2}}+{{(y+1)}^{2}}+{{z}^{2}}\le 17.$
Khi đó
\(\begin{array}{c} 2x + 3y - 2z = \left( {2(x - 2) + 3(y + 1) - 2z} \right) + 4\\ \le \sqrt {\left( {{2^2} + {3^2} + {{( - 2)}^2}} \right)\left( {{{(x - 2)}^2} + {{(y - 1)}^2} + {z^2}} \right)} + 4 \le \sqrt {17.17} + 4 = 21. \end{array}\)
Dấu bằng đạt tại \(\left\{ \begin{array}{l} \frac{{x - 2}}{2} = \frac{{y + 1}}{3} = \frac{z}{{ - 2}}\\ 2x + 3y - 2z = 21 \end{array} \right. \Leftrightarrow x = \frac{{74}}{{17}},y = \frac{{43}}{{17}},z = - \frac{{40}}{{17}}.\) Chọn đáp án C.
Ví dụ 3. Cho hai số thực $x,y$ thay đổi thoả mãn $x+y=\sqrt{x-1}+\sqrt{2y+2}.$ Gọi $a,b$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $S={{x}^{2}}+{{y}^{2}}+2(x+1)(y+1)+8\sqrt{4-x-y}.$ Tính $P=a+b.$
A. $P=44.$ | B. $P=41.$ | C. $P=43.$ | D. $P=42.$ |
Giải. Ta có $x+y=\sqrt{x-1}+\sqrt{2(y+1)}\le \sqrt{3(x+y)}\Rightarrow t=x+y\in [0;3].$
Khi đó
$\begin{align}& S={{(x+y)}^{2}}+2(x+y)+8\sqrt{4-x-y}+2 \\& =f(t)={{t}^{2}}+2t+8\sqrt{4-t}+2\in [18;25],\forall t\in [0;3]\Rightarrow P=18+25=43. \end{align}$
Chọn đáp án C.
Ví dụ 4: Số phức $z$ thoả mãn $\left| z+1-2i \right|=2\sqrt{2},$ giá trị lớn nhất của biểu thức $a\left| z-1 \right|+b\left| z+3-4i \right|,\left( a,b>0 \right)$ bằng
Giải. Đặt $z=x+yi\Rightarrow \left| z+1-2i \right|=2\sqrt{2}\Leftrightarrow {{(x+1)}^{2}}+{{(y-2)}^{2}}=8.$
Khi đó sử dụng bất đẳng thức Cauchy – Schwarz có
$\begin{gathered} P = a\sqrt {{{(x - 1)}^2} + {y^2}} + b\sqrt {{{(x + 3)}^2} + {{(y - 4)}^2}} \leqslant \sqrt {\left( {{a^2} + {b^2}} \right)\left( {{{\left( {x - 1} \right)}^2} + {y^2} + {{\left( {x + 3} \right)}^2} + {{\left( {y - 4} \right)}^2}} \right)} \\ = \sqrt {\left( {{a^2} + {b^2}} \right)\left( {2{x^2} + 2{y^2} + 4x - 8y + 26} \right)} = \sqrt {2\left( {{a^2} + {b^2}} \right)\left( {{{\left( {x + 1} \right)}^2} + {{\left( {y - 2} \right)}^2} + 8} \right)} \\ = \sqrt {2\left( {{a^2} + {b^2}} \right)\left( {8 + 8} \right)} = 4\sqrt {2\left( {{a^2} + {b^2}} \right)} . \\ \end{gathered} $
Chọn đáp án B.
-
Bất đẳng thức Cauchy – Schwarz dạng phân thức
Với các số thực dương ${{x}_{1}},{{x}_{2}},...,{{x}_{n}}$ ta luôn có $\dfrac{a_{1}^{2}}{{{x}_{1}}}+\dfrac{a_{2}^{2}}{{{x}_{2}}}+...+\dfrac{a_{n}^{2}}{{{x}_{n}}}\ge \frac{{{({{a}_{1}}+{{a}_{2}}+...+{{a}_{n}})}^{2}}}{{{x}_{1}}+{{x}_{2}}+...+{{x}_{n}}}.$ Dấu bằng đạt tại $\dfrac{{{a}_{1}}}{{{x}_{1}}}=\dfrac{{{a}_{2}}}{{{x}_{2}}}=...=\dfrac{{{a}_{n}}}{{{x}_{n}}}.$
Ví dụ 1: Cho hàm số $y={{(x+m)}^{3}}+{{(x+n)}^{3}}+{{(x+p)}^{3}}-{{x}^{3}},$ có đồ thị $(C).$ Tiếp tuyến của $(C)$ tại điểm có hoành độ $x=1$ có hệ số góc nhỏ nhất. Giá trị nhỏ nhất của biểu thức ${{m}^{2}}+2{{n}^{2}}+3{{p}^{2}}$ bằng
A. $\frac{12}{11}.$ | B. $\frac{96}{11}.$ | C. $\frac{48}{11}.$ | D. $\frac{24}{11}.$ |
Giải. Hệ số góc của tiếp tuyến là
$k={y}'=3{{(x+m)}^{2}}+3{{(x+n)}^{2}}+3{{(x+p)}^{2}}-3{{x}^{2}}=6{{x}^{2}}+6(m+n+p)x+3{{m}^{2}}+3{{n}^{2}}+3{{p}^{2}}$ đạt giá trị nhỏ nhất tại $x=-\frac{6(m+n+p)}{2.6}=-\frac{m+n+p}{2}.$ Theo giả thiết có $-\frac{m+n+p}{2}=1\Leftrightarrow m+n+p=-2.$
Khi đó theo bất đẳng thức Cauchy – Schwarz dạng phân thức ta có:
${{m}^{2}}+2{{n}^{2}}+3{{p}^{2}}=\dfrac{{{m}^{2}}}{1}+\dfrac{{{n}^{2}}}{\frac{1}{2}}+\dfrac{{{p}^{2}}}{\dfrac{1}{3}}\ge \dfrac{{{(m+n+p)}^{2}}}{1+\dfrac{1}{2}+\frac{1}{3}}=\dfrac{4}{1+\dfrac{1}{2}+\dfrac{1}{3}}=\dfrac{24}{11}.$
Dấu bằng đạt tại \(\left\{ \begin{array}{l} m + n + p = - 2\\ \dfrac{m}{1} = \dfrac{n}{{\frac{1}{2}}} = \dfrac{p}{{\dfrac{1}{3}}} \end{array} \right. \Leftrightarrow m = - \dfrac{{12}}{{11}},n = - \dfrac{6}{{11}},p = - \dfrac{4}{{11}}.\) Chọn đáp án D.
Ví dụ 2: Cho các số thực $x,y,z$ thoả mãn $xy+yz+zx=1.$ Giá trị nhỏ nhất của biểu thức $3{{x}^{2}}+4{{y}^{2}}+5{{z}^{2}}$ gần nhất với kết quả nào dưới đây ?
A. $1,33.$C. $3,89.$ | B. $1,94.$D. $2,67.$ |
Giải. Ta đánh giá: $3{{x}^{2}}+4{{y}^{2}}+5{{z}^{2}}\ge 2k(xy+yz+zx)\Leftrightarrow (k+3){{x}^{2}}+(k+4){{y}^{2}}+(k+5){{z}^{2}}\ge k{{(x+y+z)}^{2}}.$
Trong đó $k$ là một hằng số dương được chọn sau, khi đó giá trị nhỏ nhất của biểu thức $3{{x}^{2}}+4{{y}^{2}}+5{{z}^{2}}$ bằng $2k.$
Sử dụng bất đẳng thức Cauchy – Schwarz dạng phân thức ta có:
$(k+3){{x}^{2}}+(k+4){{y}^{2}}+(k+5){{z}^{2}}=\dfrac{{{x}^{2}}}{\frac{1}{k+3}}+\dfrac{{{y}^{2}}}{\frac{1}{k+4}}+\dfrac{{{z}^{2}}}{\frac{1}{k+5}}\ge \dfrac{{{(x+y+z)}^{2}}}{\dfrac{1}{k+3}+\dfrac{1}{k+4}+\dfrac{1}{k+5}}.$
Vậy hằng số $k$ cần tìm là nghiệm dương của phương trình $\dfrac{1}{\dfrac{1}{k+3}+\dfrac{1}{k+4}+\dfrac{1}{k+5}}=k\Leftrightarrow {{k}^{3}}+6{{k}^{2}}-30=0\Rightarrow k\approx 1,9434.$ Do vậy chọn đáp án C.
-
Bất đẳng thức Mincopski (bất đẳng thức véctơ)
- $\sqrt{{{a}^{2}}+{{b}^{2}}}+\sqrt{{{m}^{2}}+{{n}^{2}}}\ge \sqrt{{{(a+m)}^{2}}+{{(b+n)}^{2}}}.$ Dấu bằng xảy ra khi và chỉ khi $\frac{a}{m}=\frac{b}{n}=k>0.$
Ví dụ 1:Giá trị nhỏ nhất của biểu thức $\sqrt{{{(x-1)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+1)}^{2}}+{{y}^{2}}}+\left| y-2 \right|$ bằng
A. $\sqrt{5}.$ | B. $2.$ | C. $2+\sqrt{3}.$ | D. $\frac{4+\sqrt{3}}{2}.$ |
Giải.Sử dụng bất đẳng thức Mincopsky ta có
\(\begin{array}{c} \sqrt {{{(x - 1)}^2} + {y^2}} + \sqrt {{{(x + 1)}^2} + {y^2}} = \sqrt {{{(x - 1)}^2} + {y^2}} + \sqrt {{{( - x - 1)}^2} + {y^2}} \\ \ge \sqrt {{{(x - 1 - x - 1)}^2} + {{(y + y)}^2}} = \sqrt {4{y^2} + 4} = 2\sqrt {{y^2} + 1} . \end{array}\)
Do đó $\sqrt{{{(x-1)}^{2}}+{{y}^{2}}}+\sqrt{{{(x+1)}^{2}}+{{y}^{2}}}+\left| y-2 \right|\ge f(y)=2\sqrt{{{y}^{2}}+1}+\left| y-2 \right|\ge \underset{\mathbb{R}}{\mathop{\min }}\,f(y)=f\left( \frac{1}{\sqrt{3}} \right)=2+\sqrt{3}.$
Dấu bằng đạt tại \(\left\{ \begin{array}{l} \frac{{x - 1}}{{ - x - 1}} = \frac{y}{y}\\ y = \frac{1}{{\sqrt 3 }} \end{array} \right. \Leftrightarrow x = 0;y = \frac{1}{{\sqrt 3 }}.\) Chọn đáp án C.
Bạn đọc cần bản PDF của bài viết này hãy để lại Bình luận trong phần Bình luận ngay bên dưới Bài viết này Vted sẽ gửi cho các bạn
>>Xem thêm Cập nhật Đề thi thử tốt nghiệp THPT 2023 môn Toán có lời giải chi tiết
Combo 4 Khoá Luyện thi THPT Quốc Gia 2023 Môn Toán dành cho teen 2K5>>Xem thêm Tổng hợp các công thức tính nhanh số phức rất hay dùng- Trích bài giảng khoá học PRO X tại Vted.vn
>>Xem thêm [Vted.vn] - Công thức giải nhanh Hình phẳng toạ độ Oxy
>>Xem thêm [Vted.vn] - Công thức giải nhanh hình toạ độ Oxyz
>>Xem thêm kiến thức về Cấp số cộng và cấp số nhân
>>Xem thêm Các bất đẳng thức cơ bản cần nhớ áp dụng trong các bài toán giá trị lớn nhất và giá trị nhỏ nhất
>>Tải về Tổng hợp các công thức lượng giác cần nhớ
>>Sách Khám Phá Tư Duy Kỹ Thuật Giải Bất Đẳng Thức Bài Toán Min- Max
XEM TRỰC TUYẾN
>>Tải về Bài viết Các bất đẳng thức cơ bản cần nhớ áp dụng trong các bài toán giá trị lớn nhất và giá trị nhỏ nhất
Từ khóa » Các Bdt đáng Nhớ
-
[ Kiến Thức Cơ Bản Về Bất Đẳng Thức ] Lớp 8, Lớp 9, Lớp 10
-
Bất đẳng Thức đáng Nhớ Và Quan Trọng - DINHNGHIA.VN
-
Các Bất đẳng Thức THCS Cơ Bản Và Nâng Cao - Abcdonline
-
Bảy Hằng đẳng Thức đáng Nhớ – Wikipedia Tiếng Việt
-
Những Hằng Đẳng Thức Đáng Nhớ Và Hệ Quả - MathVn.Com
-
Các Bất đẳng Thức đáng Nhớ
-
Các Bất đẳng Thức đáng Nhớ
-
[PDF] I. Các Bất đẳng Thức đáng Nhớ
-
Tổng Hợp Bất Đẳng Thức Đáng Nhớ Và Hệ Quả ...
-
Các Hằng đẳng Thức Mở Rộng Cơ Bản Và Nâng Cao
-
Các Bất đẳng Thức Phụ Thường Dùng Trong Cm BĐT - 123doc
-
Bất đẳng Thức Và Các ứng Dụng