Weiyinwei/GRCN: Graph-Refined Convolutional Network ... - GitHub

Skip to content Dismiss alert {{ message }} / GRCN Public
  • Notifications You must be signed in to change notification settings
  • Fork 6
  • Star 31

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

31 stars 6 forks Branches Tags Activity Star Notifications You must be signed in to change notification settings
  • Code
  • Issues
  • Pull requests
  • Actions
  • Projects
  • Security

    Uh oh!

    There was an error while loading. Please reload this page.

  • Insights
Additional navigation options weiyinwei/GRCN  masterBranchesTagsGo to fileCode

Folders and files

NameNameLast commit messageLast commit date

Latest commit

 

History

8 Commits
Dataset.pyDataset.py  
Full_t.pyFull_t.py  
Full_vt.pyFull_vt.py  
GATConv.pyGATConv.py  
Model_routing.pyModel_routing.py  
README.mdREADME.md  
SAGEConv.pySAGEConv.py  
Train.pyTrain.py  
main.pymain.py  
View all files

Repository files navigation

  • README
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

This is our Pytorch implementation for the paper:

Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He and Tat-Seng Chua. Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback. In ACM MM`20, Seattle, United States, Oct. 12-16, 2020 Author: Dr. Yinwei Wei (weiyinwei at hotmail.com)

Introduction

In this work, we focus on adaptively refining the structure of interaction graph to discover and prune potential false-positive edges. Towards this end, we devise a new GCN-based recommendermodel, Graph-Refined Convolutional Network(GRCN), which adjusts the structure of interaction graph adaptively based on status of mode training, instead of remaining the fixed structure.

Environment Requirement

The code has been tested running under Python 3.5.2. The required packages are as follows:

  • Pytorch == 1.4.0
  • torch-cluster == 1.4.2
  • torch-geometric == 1.2.1
  • torch-scatter == 1.2.0
  • torch-sparse == 0.4.0
  • numpy == 1.16.0

Example to Run the Codes

The instruction of commands has been clearly stated in the codes.

  • Kwai dataset python main.py --l_r=0.0001 --weight_decay=0.1 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False --data_path=Kwai --has_a=False --has_t=False
  • Tiktok dataset python main.py --l_r=0.0001 --weight_decay=0.001 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False --data_path=Tiktok
  • Movielens dataset python main.py --l_r=0.0001 --weight_decay=0.0001 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False

Some important arguments:

  • weight_model It specifics the type of multimodal correlation integration. Here we provide three options:

    1. mean implements the mean integration without confidence vectors. Usage --weight_model 'mean'
    2. max implements the max integration without confidence vectors. Usage --weight_model 'max'
    3. confid (by default) implements the max integration with confidence vectors. Usage --weight_model 'confid'
  • fusion_mode It specifics the type of user and item representation in the prediction layer. Here we provide three options:

    1. concat (by default) implements the concatenation of multimodal features. Usage --fusion_mode 'concat'
    2. mean implements the mean pooling of multimodal features. Usage --fusion_mode 'max'
    3. id implements the representation with only the id embeddings. Usage --fusion_mode 'id'
  • is_pruning It specifics the type of pruning operation. Here we provide three options:

    1. Ture (by default) implements the hard pruning operations. Usage --is_pruning 'True'
    2. False implements the soft pruning operations. Usage --is_pruning 'False'
  • 'has_v', 'has_a', and 'has_t' indicate the modality used in the model.

Dataset

Please check MMGCN for the datasets: Kwai, Tiktok, and Movielens.

Due to the copyright, we could only provide some toy datasets for validation. If you need the complete ones, please contact the owners of the datasets.

#Interactions #Users #Items Visual Acoustic Textual
Movielens 1,239,508 55,485 5,986 2,048 128 100
Tiktok 726,065 36,656 76,085 128 128 128
Kwai 298,492 86,483 7,010 2,048 - -

-train.npy Train file. Each line is a user with her/his positive interactions with items: (userID and micro-video ID) -val.npy Validation file. Each line is a user with her/his several positive interactions with items: (userID and micro-video ID) -test.npy Test file. Each line is a user with her/his several positive interactions with items: (userID and micro-video ID)

About

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Resources

Readme

Uh oh!

There was an error while loading. Please reload this page.

Activity

Stars

31 stars

Watchers

1 watching

Forks

6 forks Report repository

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
You can’t perform that action at this time.

Từ khóa » G Rcn