Weiyinwei/GRCN: Graph-Refined Convolutional Network ... - GitHub
- Notifications You must be signed in to change notification settings
- Fork 6
- Star 31
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback
31 stars 6 forks Branches Tags Activity Star Notifications You must be signed in to change notification settings- Code
- Issues 0
- Pull requests 0
- Actions
- Projects 0
- Security
Uh oh!
There was an error while loading. Please reload this page.
- Insights
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Latest commitHistory8 Commits | ||||
| Dataset.py | Dataset.py | |||
| Full_t.py | Full_t.py | |||
| Full_vt.py | Full_vt.py | |||
| GATConv.py | GATConv.py | |||
| Model_routing.py | Model_routing.py | |||
| README.md | README.md | |||
| SAGEConv.py | SAGEConv.py | |||
| Train.py | Train.py | |||
| main.py | main.py | |||
| View all files | ||||
Repository files navigation
- README
This is our Pytorch implementation for the paper:
Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He and Tat-Seng Chua. Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback. In ACM MM`20, Seattle, United States, Oct. 12-16, 2020 Author: Dr. Yinwei Wei (weiyinwei at hotmail.com)
Introduction
In this work, we focus on adaptively refining the structure of interaction graph to discover and prune potential false-positive edges. Towards this end, we devise a new GCN-based recommendermodel, Graph-Refined Convolutional Network(GRCN), which adjusts the structure of interaction graph adaptively based on status of mode training, instead of remaining the fixed structure.
Environment Requirement
The code has been tested running under Python 3.5.2. The required packages are as follows:
- Pytorch == 1.4.0
- torch-cluster == 1.4.2
- torch-geometric == 1.2.1
- torch-scatter == 1.2.0
- torch-sparse == 0.4.0
- numpy == 1.16.0
Example to Run the Codes
The instruction of commands has been clearly stated in the codes.
- Kwai dataset python main.py --l_r=0.0001 --weight_decay=0.1 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False --data_path=Kwai --has_a=False --has_t=False
- Tiktok dataset python main.py --l_r=0.0001 --weight_decay=0.001 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False --data_path=Tiktok
- Movielens dataset python main.py --l_r=0.0001 --weight_decay=0.0001 --dropout=0 --weight_mode=confid --num_routing=3 --is_pruning=False
Some important arguments:
-
weight_model It specifics the type of multimodal correlation integration. Here we provide three options:
- mean implements the mean integration without confidence vectors. Usage --weight_model 'mean'
- max implements the max integration without confidence vectors. Usage --weight_model 'max'
- confid (by default) implements the max integration with confidence vectors. Usage --weight_model 'confid'
-
fusion_mode It specifics the type of user and item representation in the prediction layer. Here we provide three options:
- concat (by default) implements the concatenation of multimodal features. Usage --fusion_mode 'concat'
- mean implements the mean pooling of multimodal features. Usage --fusion_mode 'max'
- id implements the representation with only the id embeddings. Usage --fusion_mode 'id'
-
is_pruning It specifics the type of pruning operation. Here we provide three options:
- Ture (by default) implements the hard pruning operations. Usage --is_pruning 'True'
- False implements the soft pruning operations. Usage --is_pruning 'False'
-
'has_v', 'has_a', and 'has_t' indicate the modality used in the model.
Dataset
Please check MMGCN for the datasets: Kwai, Tiktok, and Movielens.
Due to the copyright, we could only provide some toy datasets for validation. If you need the complete ones, please contact the owners of the datasets.
| #Interactions | #Users | #Items | Visual | Acoustic | Textual | |
|---|---|---|---|---|---|---|
| Movielens | 1,239,508 | 55,485 | 5,986 | 2,048 | 128 | 100 |
| Tiktok | 726,065 | 36,656 | 76,085 | 128 | 128 | 128 |
| Kwai | 298,492 | 86,483 | 7,010 | 2,048 | - | - |
-train.npy Train file. Each line is a user with her/his positive interactions with items: (userID and micro-video ID) -val.npy Validation file. Each line is a user with her/his several positive interactions with items: (userID and micro-video ID) -test.npy Test file. Each line is a user with her/his several positive interactions with items: (userID and micro-video ID)
About
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback
Resources
ReadmeUh oh!
There was an error while loading. Please reload this page.
ActivityStars
31 starsWatchers
1 watchingForks
6 forks Report repositoryReleases
No releases publishedPackages 0
No packages publishedLanguages
- Python 100.0%
Từ khóa » G Rcn
-
G-RCN: Optimizing The Gap Between Classification And Localization ...
-
G-RCN: Optimizing The Gap Between ... - Papers With Code
-
Global Resilient Cities Network - Rockefeller Philanthropy Advisors
-
Resilient Cities Network: Home
-
G Sealing Washers - RCN
-
Cities On The Frontline: GRCN - The Rockefeller Foundation
-
Le G-RCN (ex GEM-RCN) - Unilever Pro Nutrition Sante
-
DOIMAK Machine, RCN-G
-
Principles Of Nursing Practice | Royal College Of Nursing
-
Estiwar G - Canal RCN
-
Austin Beam - G Suite Specialist And IT Technician - LinkedIn
-
M'elike G'rcn | Facebook