What Conclusions Can We Draw About β0 And β1? | STAT 501
Skip to main content
Breadcrumb
- Home
Lesson
- Lesson 1: Simple Linear Regression
- 1.1 - What is Simple Linear Regression?
- 1.2 - What is the "Best Fitting Line"?
- 1.3 - The Simple Linear Regression Model
- 1.4 - What is The Common Error Variance?
- 1.5 - The Coefficient of Determination, \(R^2\)
- 1.6 - (Pearson) Correlation Coefficient, \(r\)
- 1.7 - Some Examples
- 1.8 - \(R^2\) Cautions
- 1.9 - Hypothesis Test for the Population Correlation Coefficient
- 1.10 - Further Examples
- Software Help 1
- Minitab Help 1: Simple Linear Regression
- R Help 1: Simple Linear Regression
- Lesson 2: SLR Model Evaluation
- 2.1 - Inference for the Population Intercept and Slope
- 2.2 - Another Example of Slope Inference
- 2.3 - Sums of Squares
- 2.4 - Sums of Squares (continued)
- 2.5 - Analysis of Variance: The Basic Idea
- 2.6 - The Analysis of Variance (ANOVA) table and the F-test
- 2.7 - Example: Are Men Getting Faster?
- 2.8 - Equivalent linear relationship tests
- 2.9 - Notation for the Lack of Fit test
- 2.10 - Decomposing the Error
- 2.11 - The Lack of Fit F-test
- 2.12 - Further Examples
- Software Help 2
- Minitab Help 2: SLR Model Evaluation
- R Help 2: SLR Model Evaluation
- Lesson 3: SLR Estimation & Prediction
- 3.1 - The Research Questions
- 3.2 - Confidence Interval for the Mean Response
- 3.3 - Prediction Interval for a New Response
- 3.4 - Further Example
- Software Help 3
- Minitab Help 3: SLR Estimation & Prediction
- R Help 3: SLR Estimation & Prediction
- Lesson 4: SLR Model Assumptions
- 4.1 - Background
- 4.2 - Residuals vs. Fits Plot
- 4.3 - Residuals vs. Predictor Plot
- 4.4 - Identifying Specific Problems Using Residual Plots
- 4.5 - Residuals vs. Order Plot
- 4.6 - Normal Probability Plot of Residuals
- 4.6.1 - Normal Probability Plots Versus Histograms
- 4.7 - Assessing Linearity by Visual Inspection
- 4.8 - Further Examples
- Software Help 4
- Minitab Help 4: SLR Model Assumptions
- R Help 4: SLR Model Assumptions
- Lesson 5: Multiple Linear Regression
- 5.1 - Example on IQ and Physical Characteristics
- 5.2 - Example on Underground Air Quality
- 5.3 - The Multiple Linear Regression Model
- 5.4 - A Matrix Formulation of the Multiple Regression Model
- 5.5 - Further Examples
- Software Help 5
- Minitab Help 5: Multiple Linear Regression
- R Help 5: Multiple Linear Regression
- Lesson 6: MLR Model Evaluation
- 6.1 - Three Types of Hypotheses
- 6.2 - The General Linear F-Test
- 6.3 - Sequential (or Extra) Sums of Squares
- 6.4 - The Hypothesis Tests for the Slopes
- 6.5 - Partial R-squared
- 6.6 - Lack of Fit Testing in the Multiple Regression Setting
- 6.7 - Further Examples
- Software Help 6
- Minitab Help 6: MLR Model Evaluation
- R Help 6: MLR Model Evaluation
- Lesson 7: MLR Estimation, Prediction & Model Assumptions
- 7.1 - Confidence Interval for the Mean Response
- 7.2 - Prediction Interval for a New Response
- 7.3 - MLR Model Assumptions
- 7.4 - Assessing the Model Assumptions
- 7.5 - Tests for Error Normality
- 7.6 - Tests for Constant Error Variance
- 7.7 - Data Transformations
- Software Help 7
- Minitab Help 7: MLR Estimation, Prediction & Model Assumptions
- R Help 7: MLR Estimation, Prediction & Model Assumptions
- Lesson 8: Categorical Predictors
- 8.1 - Example on Birth Weight and Smoking
- 8.2 - The Basics
- 8.3 - Two Separate Advantages
- 8.4 - Coding Qualitative Variables
- 8.5 - Additive Effects
- 8.6 - Interaction Effects
- 8.7 - Leaving an Important Interaction Out of a Model
- 8.8 - Piecewise Linear Regression Models
- 8.9 - Further Examples
- 8.10 - Summary
- Software Help 8
- Minitab Help 8: Categorical Predictors
- R Help 8: Categorical Predictors
- Lesson 9: Data Transformations
- 9.1 - Log-transforming Only the Predictor for SLR
- 9.2 - Log-transforming Only the Response for SLR
- 9.3 - Log-transforming Both the Predictor and Response
- 9.4 - Other Data Transformations
- 9.5 - More on Transformations
- 9.6 - Interactions Between Quantitative Predictors
- 9.7 - Polynomial Regression
- 9.8 - Polynomial Regression Examples
- Software Help 9
- Minitab Help 9: Data Transformations
- R Help 9: Data Transformations
- Lesson 10: Model Building
- 10.1 - What if the Regression Equation Contains "Wrong" Predictors?
- 10.2 - Stepwise Regression
- 10.3 - Best Subsets Regression, Adjusted R-Sq, Mallows Cp
- 10.4 - Some Examples
- 10.5 - Information Criteria and PRESS
- 10.6 - Cross-validation
- 10.7 - One Model Building Strategy
- 10.8 - Another Model Building Strategy
- 10.9 - Further Examples
- Software Help 10
- Minitab Help 10: Model Building
- R Help 10: Model Building
- Lesson 11: Influential Points
- 11.1 - Distinction Between Outliers & High Leverage Observations
- 11.2 - Using Leverages to Help Identify Extreme x Values
- 11.3 - Identifying Outliers (Unusual y Values)
- 11.4 - Deleted Residuals
- 11.5 - Identifying Influential Data Points
- 11.6 - Further Examples
- 11.7 - A Strategy for Dealing with Problematic Data Points
- 11.8 - Summary
- Software Help 11
- Minitab Help 11: Influential Points
- R Help 11: Influential Points
- Lesson 12: Multicollinearity & Other Regression Pitfalls
- 12.1 - What is Multicollinearity?
- 12.2 - Uncorrelated Predictors
- 12.3 - Highly Correlated Predictors
- 12.4 - Detecting Multicollinearity Using Variance Inflation Factors
- 12.5 - Reducing Data-based Multicollinearity
- 12.6 - Reducing Structural Multicollinearity
- 12.7 - Further Example
- 12.8 - Extrapolation
- 12.9 - Other Regression Pitfalls
- Software Help 12
- Minitab Help 12: Multicollinearity
- R Help 12: Multicollinearity
- Lesson 13: Weighted Least Squares & Logistic Regressions
- 13.1 - Weighted Least Squares
- 13.1.1 - Weighted Least Squares Examples
- 13.2 - Logistic Regression
- 13.2.1 - Further Logistic Regression Examples
- Software Help 13
- Minitab Help 13: Weighted Least Squares & Logistic Regressions
- R Help 13: Weighted Least Squares & Logistic Regressions
- 13.1 - Weighted Least Squares
Optional Content
- Topic 1: Robust Regression
- T.1.1 - Robust Regression Methods
- T1.1.1 - Robust Regression Examples
- T.1.2 - Resistant Regression Methods
- T.1.3 - Regression Depth
- T.1.1 - Robust Regression Methods
- Topic 2: Time Series & Autocorrelation
- T.2.1 - Autoregressive Models
- T.2.2 - Regression with Autoregressive Errors
- T.2.3 - Testing and Remedial Measures for Autocorrelation
- T.2.4 - Examples of Applying Cochrane-Orcutt Procedure
- T.2.5 - Advanced Methods
- T.2.5.1 - ARIMA Models
- T.2.5.4 - Generalized Least Squares
- T.2.5.2 - Exponential Smoothing
- T.2.5.3 - Spectral Analysis
- Software Help: Time & Series Autocorrelation
- Minitab Help: Time Series & Autocorrelation
- R Help: Time Series & Autocorrelation
- Topic 3: Poisson & Nonlinear Regression
- T.3.1 - Poisson Regression
- T.3.2 - Polytomous Regression
- T.3.3 - Generalized Linear Models
- T.3.4 - Nonlinear Regression
- T.3.5 - Exponential Regression Example
- T.3.6 - Population Growth Example
- Software Help: Poisson & Nonlinear Regression
- Minitab Help: Poisson & Nonlinear Regression
- R Help: Poisson & Nonlinear Regression
Từ khóa » H0 Bo
-
Habilitation B0-H0-H0V Chargé De Chantier - CEPIM
-
Habilitation électrique HO BO M0 - Sécurité - Formation Continue
-
BO$$ €H0¥ (@chichoylim) On TikTok
-
Opérations D'ordre Non électrique (B0-H0-H0V) Pour Les Exécutants ...
-
→H0$£¡n Bo¥ka (@hosein_boyka1428) • Instagram Photos And ...
-
Habilitation électrique B0, H0(V) Exécutants (installations) - Afpa
-
Habilitation électrique Pour Non électricien H0 BO BS BE Manoeuvre
-
FORMATION HABILITATION ELECTRIQUE H0/BO
-
[PDF] B0 - H0 - H0v - Habilitation électrique
-
Habilitation électrique H0 BO Non électricien - Recyclage