Xác định Vectơ Pháp Tuyến Của Mặt Phẳng Dựa Vào Tích Có Hướng
Có thể bạn quan tâm
Bài viết hướng dẫn giải các bài toán có liên quan đến việc xác định vectơ pháp tuyến của mặt phẳng dựa vào tích có hướng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian Oxyz.
1. CÁC KẾT QUẢ CẦN LƯU Ý Kết quả 1: Cho ba điểm $A$, $B$, $C$ phân biệt và không thẳng hàng cho trước. Lúc đó, mặt phẳng $(ABC)$ có một vectơ pháp tuyến là $\vec n = [\overrightarrow {AB} ,\overrightarrow {AC} ].$
Kết quả 2: Cho hai vectơ $\vec a$ và $\vec b$ không cùng phương cho trước. Ta có: $\left\{ {\begin{array}{*{20}{l}} {\vec c \bot \vec a}\\ {\vec c \bot \vec b} \end{array}} \right.$ $ \Rightarrow $ chọn $\vec c = [\vec a,\vec b].$
Kết quả 3: Hai mặt phẳng $(\alpha )$, $(\beta )$ lần lượt có các vectơ pháp tuyến là ${\vec n_\alpha }$ và ${\vec n_\beta }.$ $(\alpha )//(\beta )$ $ \Rightarrow {\vec n_\alpha }$ và ${\vec n_\beta }$ cùng phương. $(\alpha ) \bot (\beta )$ $ \Leftrightarrow {\vec n_\alpha } \bot {\vec n_\beta }.$
2. BÀI TẬP TRẮC NGHIỆM MINH HỌA Ví dụ 1: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua ba điểm $A(1;1;2)$, $B(2;1;1)$ và $C(0;-1;3).$ A. $(P):x+y+z-4=0.$ B. $(P):x+2y+z-5=0.$ C. $(P):x+z-2=0.$ D. $(P):x+z-3=0.$
Lời giải: Ta có $\overrightarrow {AB} = (1;0; – 1)$, $\overrightarrow {AC} = ( – 1; – 2;1).$ Mặt phẳng $(P)$ qua $A(1;1;2)$ và có một vectơ pháp tuyến là $\vec n = [\overrightarrow {AB} ,\overrightarrow {AC} ]$ $ = ( – 2;0; – 2)$, có phương trình $(P): – 2(x – 1) + 0(y – 1) – 2(z – 2) = 0$ $ \Leftrightarrow x + z – 3 = 0.$ Chọn đáp án D.
Ví dụ 2: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(MNP)$ biết $M(1;0;1)$, $N(2;1;-1)$ và $P(0;1;2).$ A. $2x+z-3=0.$ B. $x+y+z-2=0.$ C. $3x + y + 2z-5=0.$ D. $3x +y +2z-1=0.$
Lời giải: Ta có $\overrightarrow {MN} = (1;1; – 2)$, $\overrightarrow {MP} = ( – 1;1;1).$ Mặt phẳng $(MNP)$ qua $M(1;0;1)$ và có một vectơ pháp tuyến là $\vec n = [\overrightarrow {MN} ,\overrightarrow {MP} ] = (3;1;2)$ có phương trình: $(MNP):3(x – 1) + 1(y – 0) + 2(z – 1) = 0$ $ \Leftrightarrow 3x + y + 2z – 5 = 0.$ Chọn đáp án C.
Ví dụ 3: Trong không gian với hệ tọa độ $Oxyz$, cho điểm $A(1;0;1)$ và hai mặt phẳng $(P):x+y-2z=0$, $(Q):-x+y+z+5=0.$ Viết phương trình mặt phẳng $(\alpha )$ qua $A$, đồng thời vuông góc với hai mặt phẳng $(P)$ và $(Q).$ A. $x+ 2z-3=0.$ B. $2x+y – 2z-1=0.$ C. $3x + y + 2z – 4=0.$ D. $3x + y + 2z-5=0.$
Lời giải: Mặt phẳng $(P)$ có một vectơ pháp tuyến là ${\vec n_P} = (1;1; – 2).$ Mặt phẳng $(Q)$ có một vectơ pháp tuyến là ${\vec n_Q} = ( – 1;1;1).$ Gọi ${\vec n_\alpha }$ là một vectơ pháp tuyến của $(\alpha ).$ Ta có: $\left\{ {\begin{array}{*{20}{l}} {{{\vec n}_\alpha } \bot {{\vec n}_p}}\\ {{{\vec n}_\alpha } \bot {{\vec n}_Q}} \end{array}} \right.$ $ \Rightarrow $ chọn ${\vec n_\alpha } = \left[ {{{\vec n}_P},{{\vec n}_Q}} \right] = (3;1;2).$ Mặt phẳng $(\alpha )$ qua $A(1;0;1)$ và có một vectơ pháp tuyến là ${\vec n_\alpha } = (3;1;2)$, có phương trình $(\alpha ):3(x – 1) + 1(y – 0) + 2(z – 1) = 0$ $ \Leftrightarrow 3x + y + 2z – 5 = 0.$ Chọn đáp án D.
Ví dụ 4: Trong không gian với hệ tọa độ $Oxyz$, cho điểm $H(1;1;2)$ và hai mặt phẳng $(P):x-z+1=0$, $(Q):-x-2y+z+1=0.$ Viết phương trình mặt phẳng $(\alpha )$ qua $H$, đồng thời vuông góc với hai mặt phẳng $(P)$ và $(Q).$ A. $x + 2z – 3=0.$ B. $x+z-3=0.$ C. $x + z + 3 = 0.$ D. $3x + y + 2z – 5 = 0.$
Lời giải: Mặt phẳng $(P)$ có một vectơ pháp tuyến là ${\vec n_p} = (1;0; – 1).$ Mặt phẳng $(Q)$ có một vectơ pháp tuyến là ${\vec n_Q} = ( – 1; – 2;1).$ Gọi ${\vec n_\alpha }$ là một vectơ pháp tuyến của $(\alpha ).$ Ta có: $\left\{ {\begin{array}{*{20}{l}} {{{\vec n}_\alpha } \bot {{\vec n}_P}}\\ {{{\vec n}_\alpha } \bot {{\vec n}_Q}} \end{array}} \right.$ $ \Rightarrow $ chọn ${\vec n_\alpha } = \left[ {{{\vec n}_P},{{\vec n}_Q}} \right] = ( – 2;0; – 2).$ Mặt phẳng $(\alpha )$ qua $H(1;1;2)$ và có một vectơ pháp tuyến là ${\vec n_\alpha } = ( – 2;0; – 2)$ có phương trình $(\alpha ): – 2(x – 1) + 0(y – 1) – 2(z – 2) = 0$ $ \Leftrightarrow x + z – 3 = 0.$ Chọn đáp án B.
Ví dụ 5: Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A(1;3;2)$, $B( – 1;1;0)$ và mặt phẳng $(\alpha ):x – 4y – z + 10 = 0.$ Viết phương trình mặt phẳng $(P)$ qua hai điểm $A$, $B$ và vuông góc với mặt phẳng $(\alpha ).$ A. $x + 2z – 3 = 0.$ B. $3x + 2y – 5z + 1 = 0.$ C. $3x + 2y – 5z – 2 = 0.$ D. $3x + y + 2z – 5 = 0.$
Lời giải: Mặt phẳng $(\alpha )$ có một vectơ pháp tuyến là ${\vec n_\alpha } = (1; – 4; – 1)$ và $\overrightarrow {AB} = ( – 2; – 2; – 2).$ Gọi ${\vec n_P}$ là một vectơ pháp tuyến của $(P).$ Ta có: $\left\{ {\begin{array}{*{20}{l}} {{{\vec n}_P} \bot {{\vec n}_\alpha }}\\ {{{\vec n}_P} \bot \overrightarrow {AB} } \end{array}} \right.$ $ \Rightarrow $ chọn ${\vec n_P} = \left[ {{{\vec n}_\alpha },\overrightarrow {AB} } \right] = (6;4; – 10).$ Mặt phẳng $(P)$ qua $B(-1;1;0)$ và có một vectơ pháp tuyến là ${\vec n_P} = (6;4; – 10)$, có phương trình: $(P):6(x + 1) + 4(y – 1) – 10(z – 0) = 0$ $ \Leftrightarrow 3x + 2y – 5z + 1 = 0.$ Chọn đáp án B.
Ví dụ 6: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua hai điểm $A(1;2;1)$, $B( – 1;4; – 1)$ và song song với trục $Ox.$ A. $x + 2y + z – 8 = 0.$ B. $y + z – 5 = 0.$ C. $y + z – 3 = 0.$ D. $3x + y + z – 1 = 0.$
Lời giải: Gọi ${\vec n_P}$ là một vectơ pháp tuyến của $(P).$ Ta có: $\left\{ {\begin{array}{*{20}{l}} {{{\vec n}_P} \bot \vec i = (1;0;0)}\\ {{{\vec n}_P} \bot \overrightarrow {AB} = ( – 2;2; – 2)} \end{array}} \right.$ $ \Rightarrow $ chọn ${\vec n_P} = [\vec i,\overrightarrow {AB} ] = (0;2;2).$ Mặt phẳng $(P)$ qua $A(1;2;1)$ và có một vectơ pháp tuyến là ${\vec n_P} = (0;2;2)$ có phương trình $(P):0(x – 1) + 2(y – 2) + 2(z – 1) = 0$ $ \Leftrightarrow y + z – 3 = 0$ (thỏa do $O \notin (P)$). Chọn đáp án C.
Ví dụ 7: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua hai điểm $A(1;2;1)$, $B(-1;4;-1)$ và vuông góc với mặt phẳng $(Oyz).$ A. $x + 2y + z – 8 = 0.$ B. $y + z – 4 = 0.$ C. $y + z – 3 = 0.$ D. $x + y + z – 4 = 0.$
Lời giải: Mặt phẳng $(Oyz):$ $x = 0$ có một vectơ pháp tuyến là $\vec n = (1;0;0)$ và $\overrightarrow {AB} = ( – 2;2; – 2).$ Gọi ${\vec n_P}$ là một vectơ pháp tuyến của $(P).$ Ta có: $\left\{ {\begin{array}{*{20}{l}} {{{\vec n}_P} \bot \vec n}\\ {{{\vec n}_P} \bot \overrightarrow {AB} } \end{array}} \right.$ $ \Rightarrow $ chọn ${\vec n_P} = [\vec n,\overrightarrow {AB} ] = (0;2;2).$ Mặt phẳng $(P)$ qua $A(1;2;1)$ và có một vectơ pháp tuyến là ${\vec n_P} = (0;2;2)$, có phương trình $(P):0(x – 1) + 2(y – 2) + 2(z – 1) = 0$ $ \Leftrightarrow y + z – 3 = 0.$ Chọn đáp án C.
Ví dụ 8: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua hai điểm $M(1;2;3)$, $N(-1;1;5)$ và song song với trục $Oz.$ A. $x + z – 4 = 0.$ B. $x – 2y + 3 = 0.$ C. $x – 2y + 5 = 0.$ D. $x + 2z – 7 = 0.$
Lời giải: Gọi ${\vec n_P}$ là một vectơ pháp tuyến của $(P).$ Ta có: $\left\{ {\begin{array}{*{20}{l}} {{{\vec n}_P} \bot \vec k = (0;0;1)}\\ {{{\vec n}_P} \bot \overrightarrow {MN} = ( – 2; – 1;2)} \end{array}} \right.$ $ \Rightarrow $ chọn ${\vec n_p} = [\vec k,\overrightarrow {MN} ] = (1; – 2;0).$ Mặt phẳng $(P)$ qua $M(1;2;3)$ và có một vectơ pháp tuyến là ${\vec n_P} = (1; – 2;0)$, có phương trình $(P):1(x – 1) – 2(y – 2) + 0(z – 3) = 0$ $ \Leftrightarrow x – 2y + 3 = 0$ (thỏa do $O \notin (P)$). Chọn đáp án B.
Ví dụ 9: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua hai điểm $M(1;2;3)$, $N(-1;1;5)$ và vuông góc với mặt phẳng $(Oxy).$ A. $x + z – 4 = 0.$ B. $x + 2z – 7 = 0.$ C. $x – 2y + 5 = 0.$ D. $x – 2y + 3 = 0.$
Lời giải: Mặt phẳng $(Oxy):$ $z = 0$ có một vectơ pháp tuyến là $\vec n = (0;0;1)$ và $\overrightarrow {MN} = ( – 2; – 1;2).$ Gọi ${\vec n_P}$ là một vectơ pháp tuyến của $(P).$ Ta có: $\left\{ {\begin{array}{*{20}{l}} {{{\vec n}_P} \bot \vec n}\\ {{{\vec n}_P} \bot \overrightarrow {MN} } \end{array}} \right.$ $ \Rightarrow $ chọn ${\vec n_P} = [\vec n,\overrightarrow {MN} ] = (1; – 2;0).$ Mặt phẳng $(P)$ qua $M(1;2;3)$ và có một vectơ pháp tuyến là ${\vec n_P} = (1; – 2;0)$, có phương trình $(P):1(x – 1) – 2(y – 2) + 0(z – 3) = 0$ $ \Leftrightarrow x – 2y + 3 = 0.$ Chọn đáp án D.
Ví dụ 10: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua điểm $A(1;2;1)$, vuông góc với mặt phẳng $(\alpha ): – 2x + 2y – 2z + 1 = 0$ và song song với trục $Ox.$ A. $x + 2y + z – 8 = 0.$ B. $y + z – 3 = 0.$ C. $y + z – 1 = 0.$ D. $3x + y + z – 1 = 0.$
Lời giải: Mặt phẳng $(\alpha )$ có một vectơ pháp tuyến là $\vec n = ( – 2;2; – 2).$ Gọi ${\vec n_P}$ là một vectơ pháp tuyến của $(P).$ Ta có: $\left\{ {\begin{array}{*{20}{l}} {{{\vec n}_P} \bot \vec i = (1;0;0)}\\ {{{\vec n}_P} \bot \vec n} \end{array}} \right.$ $ \Rightarrow $ chọn ${{{\vec n}_P} = [\vec i,\vec n] = (0;2;2)}.$ Mặt phẳng $(P)$ qua $A(1;2;1)$ và có một vectơ pháp tuyến là ${\vec n_P} = (0;2;2)$, có phương trình $(P):0(x – 1) + 2(y – 2) + 2(z – 1) = 0$ $ \Leftrightarrow y + z – 3 = 0$ (thỏa do $O \notin (P)$). Chọn đáp án B.
Ví dụ 11: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua điểm $A(1;2;3)$, vuông góc với mặt phẳng $(\alpha ): – 2x + 2y – 2z + 1 = 0$ và vuông góc với mặt phẳng $(Oyz).$ A. $x+2y +z-8=0.$ B. $y +z-5=0.$ C. $y +z-1=0.$ D. $3x+y+z-1=0.$
Lời giải: Mặt phẳng $(Oyz):x = 0$ có một vectơ pháp tuyến là $\vec n = (1;0;0).$ Mặt phẳng $(\alpha )$ có một vectơ pháp tuyến là ${\vec n_\alpha } = ( – 2;2; – 2).$ Gọi ${\vec n_P}$ là một vectơ pháp tuyến của $(P).$ Ta có: $\left\{ {\begin{array}{*{20}{l}} {{{\vec n}_P} \bot \vec n}\\ {{{\vec n}_P} \bot {{\vec n}_\alpha }} \end{array}} \right.$ $ \Rightarrow $ chọn ${\vec n_P} = \left[ {\vec n,{{\vec n}_\alpha }} \right] = (0;2;2).$ Mặt phẳng $(P)$ qua $A(1;2;3)$ và có một vectơ pháp tuyến là ${\vec n_P} = (0;2;2)$, có phương trình $(P):0(x – 1) + 2(y – 2) + 2(z – 3) = 0$ $ \Leftrightarrow y + z – 5 = 0$ (thỏa do $O \notin (P)$). Chọn đáp án B.
3. LUYỆN TẬP 1. ĐỀ BÀI Câu 1: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(ABC)$ biết $A(1;3;2)$, $B(2;-1;1)$ và $C(-1;1;0).$ A. $x + 2z – 3 = 0.$ B. $2x + y – 2z – 1 = 0.$ C. $3x + 2y – 5z + 4 = 0.$ D. $3x + 2y – 5z + 1 = 0.$
Câu 2: Trong không gian với hệ tọa độ $Oxyz$, cho điểm $K(-1;1;0)$ và hai mặt phẳng $(\alpha ):x – 4y – z = 0$, $(\beta ): – 2x – 2y – 2z + 1 = 0.$ Viết phương trình mặt phẳng $(P)$ qua $K$, đồng thời vuông góc với hai mặt phẳng $(\alpha )$ và $(\beta ).$ A. $x – 2y + 3 = 0.$ B. $3x + 2y – 5z + 1 = 0.$ C. $3x + 2y – 5z – 2 = 0.$ D. $3x + y + 2z – 5 = 0.$
Câu 3: Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $A(1;1;2)$, $B(2;1;1)$ và mặt phẳng $(\alpha ): – x – 2y + z + 9 = 0.$ Viết phương trình mặt phẳng $(P)$ qua hai điểm $A$, $B$ và vuông góc với mặt phẳng $(\alpha ).$ A. $(P):x + y + z – 4 = 0.$ B. $(P):x + z – 3 = 0.$ C. $(P):x + z – 2 = 0.$ D. $(P):x + 2y + z – 5 = 0.$
Câu 4: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua hai điểm $A(1;0;2)$, $B(3;-1;1)$ và song song với trục $Oy.$ A. $x+ 2z-3=0.$ B. $y +z-5=0.$ C. $y +z-1=0.$ D. $x + 2z – 5 = 0.$
Câu 5: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua hai điểm $A(1;0;2)$, $B(3;-1;1)$ và vuông góc với mặt phẳng $(Oxz).$ A. $x + 2z-3=0.$ B. $y +z-5=0.$ C. $y +z-1=0.$ D. $x + 2z-5=0.$
Câu 6: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua điểm $A(1;0;2)$, vuông góc với mặt phẳng $(\alpha ):2x – y – z + 7 = 0$ và song song với trục $Oy.$ A. $x + 2z – 3=0.$ B. $y + z-5=0.$ C. $y +z-1=0.$ D. $x+2z -5=0.$
Câu 7: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua hai điểm $A(1;0;2)$, vuông góc với mặt phẳng $(\alpha ):2x – y – z + 7 = 0$ và vuông góc với mặt phẳng $(Oxz).$ A. $x + 2z-3=0.$ B. $y +z-5=0.$ C. $y +z-1=0.$ D. $x + 2z-5=0.$
Câu 8: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua điểm $A(-1;1;5)$, vuông góc với mặt phẳng $(\alpha ): – 2x – y + 2z + 11 = 0$ và vuông góc với mặt phẳng $(Oxy).$ A. $x+z–4=0.$ B. $x + 2z – 7 = 0.$ C. $x-2y+5=0.$ D. $x – 2y +3=0.$
Câu 9: Trong không gian với hệ tọa độ $Oxyz$, viết phương trình mặt phẳng $(P)$ qua điểm $A(-1;1;5)$, vuông góc với mặt phẳng $(\alpha ): – 2x – y + 2z + 11 = 0$ và song song với trục $Oz.$ A. $x+z-4=0.$ B. $x + 2z-7 =0.$ C. $x – 2y +5=0.$ D. $x – 2y +3=0.$
Câu 10: Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm $M(1;0;1)$, $N(2;1;-1)$ và mặt phẳng $(\alpha ): – x + y + z + 5 = 0.$ Viết phương trình mặt phẳng $(P)$ qua hai điểm $M$, $N$ và vuông góc với mặt phẳng $(\alpha ).$ A. $2x+z-3=0.$ B. $x+y+z-2=0.$ C. $3x + y + 2z -5=0.$ D. $3x +y + 2z-1=0.$
2. BẢNG ĐÁP ÁN
| Câu | 1 | 2 | 3 | 4 | 5 |
| Đáp án | D | B | B | D | D |
| Câu | 6 | 7 | 8 | 9 | 10 |
| Đáp án | D | D | D | D | C |
Từ khóa » Trong Không Gian Oxyz Tìm Vecto Pháp Tuyến
-
Cách Tìm Vecto Pháp Tuyến Của Mặt Phẳng - Diện Tích
-
Công Thức Tính Vecto Pháp Tuyến Của Mặt Phẳng Oxy Toán 12.
-
Vecto Pháp Tuyến Của Mặt Phẳng - Toán Thầy Định
-
Trong Không Gian (Oxyz) Một Vectơ Pháp Tuyến Của Mặt Phẳng X/-2+y
-
Trong Không Gian Oxyz, Cho Mặt Phẳng (P): (2x-y+3z-2=0 ). Mặt Ph
-
Trong Không Gian Oxyz, Cho Mặt Phẳng ( P ):x - Y + 3 = 0. Vec-tơ
-
Trong Không Gian Với Hệ Tọa độ Oxyz, Véc-tơ Nào Dưới đây Là Một ...
-
Trong Không Gian (Oxyz) Một Vectơ Pháp Tuyến Của Mặt Phẳng (P ...
-
Lý Thuyết Phương Trình Mặt Phẳng Oxyz Và Cách Giải Bài Tập
-
Cách đổi Vectơ Pháp Tuyến Thành Vectơ Chỉ Phương OXYZ - Xây Nhà
-
Lý Thuyết Phương Trình Mặt Phẳng | SGK Toán Lớp 12
-
Trong Không Gian Oxyz, Vectơ Nào Dưới đây Là Một Vectơ Pháp Tuyến ...
-
Trong Không Gian Oxyz, Cho đường Thẳng . Mặt Phẳng (P) Vuông ...
-
Trong Không Gian Oxyz, Một Vectơ Pháp Tuyến Của Mặt Phẳng X/-2+y/-1