Molecule Of The Month: TATA-Binding Protein - PDB-101
Maybe your like
- Molecule of the MonthMotM
- Current Feature
- By Category
- By Date
- By Title
- About Molecule of the Month
- Image Download
- Newsletter Subscription
- Browse
- Learn
- Paper Models
- Flyers, Posters, & Calendars
- Videos
- Interactive Animations
- Coloring Books
- Structural Biology Highlights
- 3D Printing
- Exploring the Structural Biology of Cancer
- Exploring the Structural Biology of Bioenergy
- Exploring the Structural Biology of Viruses
- Exploring the Structural Biology of Health and Nutrition
- Exploring the Structural Biology of Evolution
- Exploring Structural Biology with Computed Structure Models (CSMs)
- COVID-19 Pandemic Resources
- Other Resources
- Train
- Guide to Understanding PDB Data
- Training Courses
- Education Corner
- PDB and Data Archiving Curriculum
- Teach
- Overview of Curriculum Modules
- Biomolecular Structures and Models
- COVID-19 in Molecular Detail
- Diabetes at a Molecular Level
- Molecular Immunology
- Molecular View of HIV/AIDS
- Box of Lessons
- Global HealthHealth
- Diabetes Mellitus
- Antimicrobial Resistance
- Cancer
- SciArt
- Irving Geis
- David Goodsell
- Irina Bezsonova
- Events
- Art of Science
- Poster Prize
- PDB50
- Science Olympiad
- Video Challenge
Past events
- About
- About PDB-101
- Contact us
- How to Cite
- User Community
Training and outreach portal of
Molecular explorationsthrough biology and medicine
| Training and outreach portal of  | ![]() |
Molecule of the Month
| By Category | By Date | By Title |
TATA protein tells RNA polymerase where to get started on a gene
Download high quality TIFF image The enzyme RNA polymerase performs the delicate task of unwinding the two strands of DNA and transcribing the genetic information into a strand of RNA. But how does it know where to start? Our cells contain 30,000 genes encoded in billions of nucleotides. For each gene, the cell must be able to start transcription at the right place and at the right time. Getting Started
Specialized DNA sequences next to genes, called promoters, define the proper start site and direction for transcription. Promoters vary in sequence and location from organism to organism. In bacteria, typical promoters contain two regions that interact with the sigma subunit of their RNA polymerase. The sigma subunit binds to these DNA sequences, assists the start of transcription, and then detaches from the polymerase as it continues transcription through the gene. Our cells have a far more complex promoter system, using dozens of different proteins to ensure that the proper RNA polymerase is targeted to each gene. The TATA-binding protein is the central element of this system.The TATA Box
Our protein-coding genes have a characteristic sequence of nucleotides, termed the TATA box, in front of the start site of transcription. The typical sequence is something like T-A-T-A-a/t-A-a/t, where a/t refers to positions that can be either A or T. Surprisingly many variations on this theme also work, and one of the challenges in the study of transcription is discovering why some sequences work and others don't. The TATA-binding protein (sometimes referred to as TBP) recognizes this TATA sequence and binds to it, creating a landmark that marks the start site of transcription. When the first structures of TATA-binding protein were determined, researchers discovered that TATA-binding protein is not gentle when it binds to DNA. Instead, it grabs the TATA sequence and bends it sharply, as seen in PDB entries 1ytb , 1tgh and 1cdw .
Transcription factors bound to short pieces of DNA: TFIIB (top), TFIIA (middle), and NC2 (bottom).Download high quality TIFF image Helpers
TATA-binding protein works as part of a larger transcription factor, TFIID, that starts the process of transcription. After it binds to the promoter, it recruits additional transcription factors. TFIIB, shown at the top here from PDB entry 1vol , binds next. Then a string of other transcription factors bind, constructing a large protein complex that decides whether or not to start transcription. These may include transcription activators, such as TFIIA shown in the middle from PDB entry 1ytf , that promote the start of transcription. Other factors inhibit the start of transcription, such as the transcription regulator NC2 (negative cofactor 2), shown at the bottom from PDB entry 1jfi . In all of these pictures, TATA-binding protein is shown in blue, a small piece of DNA is shown in red and the transcription factor is shown in green.Exploring the Structure
TATA-binding protein uses two types of interactions to recognize and hold the TATA sequence, as seen in this structure from PDB entry 1ytb . First, as shown at the top, it has a string of lysine and arginine amino acids (colored dark blue) that interact with the phosphate groups of the DNA (colored bright yellow and red). This glues the protein to the DNA. Second, the protein uses specially-placed amino acids to interact with DNA bases. As shown in the lower picture, four phenylalanine amino acids jam into the DNA minor groove and form the kinks that bend the DNA. There are also two symmetrical asparagine amino acids that form hydrogen bonds at the very center. The combination of the unusual flexibility of TATA DNA sequences and these specific hydrogen bonds allows TATA-binding protein to recognize the proper sequence. As you are looking at these structures yourself, notice that TATA-binding protein, even though it is composed of a single protein chain, is composed of two symmetrical halves. This symmetry is easily seen in the two pairs of phenylalanines and the two asparagines shown in the lower figure. It is thought that an ancient gene duplication created this protein by combining two copies of the same gene. These pictures were created with RasMol. You can create similar pictures by clicking on the accession codes here and picking one of the options for 3D viewing. The phenylalanines shown above are numbers 99, 116, 190, and 207, and the asparagines are numbers 69 and 159. Topics for Further Discussion
- See how the TATA-Binding Protein Tells RNA Polymerase Where To Get Started on a Gene using Mol*
Related PDB-101 Resources
- Browse Protein Synthesis
References
- R. G. Roeder (1996) The role of general initiation factors in transcription by RNA polymerase II. Trends in Biochemical Sciences 21, 327-335.
- Z. S. Juo, T. K. Chiu, P. M. Leiberman, I. Baikalov, A. J. Berk and R. E. Dickerson (1996) How proteins recognize the TATA box. Journal of Molecular Biology 261, 239- 254.
July 2005, David Goodsell
http://doi.org/10.2210/rcsb_pdb/mom_2005_7 About Molecule of the Month The RCSB PDB Molecule of the Month by David S. Goodsell (The Scripps Research Institute and the RCSB PDB) presents short accounts on selected molecules from the Protein Data Bank. Each installment includes an introduction to the structure and function of the molecule, a discussion of the relevance of the molecule to human health and welfare, and suggestions for how visitors might view these structures and access further details.MoreAbout PDB-101
Researchers around the globe make 3D structures freely available from the Protein Data Bank (PDB) archive. PDB-101 training materials help graduate students, postdoctoral scholars, and researchers use PDB data and RCSB PDB tools. Outreach content demonstrate how PDB data impact fundamental biology, biomedicine, bioengineering/biotechnology, and energy sciences in 3D by a multidisciplinary user community. Education Materials provide lessons and activities for teaching and learning.
PDB-101 is developed by the RCSB PDB.
RCSB PDB (citation) is hosted by
![]()
![]()
RCSB PDB is a member of
RCSB PDB Core Operations are funded by the U.S. National Science Foundation (DBI-2321666), the US Department of Energy (DE-SC0019749), and the National Cancer Institute, National Institute of Allergy and Infectious Diseases, and National Institute of General Medical Sciences of the National Institutes of Health under grant R01GM157729.
Tag » What Is A Tata Box
-
TATA Box | Learn Science At Scitable - Nature
-
TATA Box - Wikipedia
-
Frequency Distribution Of TATA Box And Extension Sequences On ...
-
TATA Box Definition
-
TATA Box - YouTube
-
TATA Box - An Overview | ScienceDirect Topics
-
TATA Box - An Overview | ScienceDirect Topics
-
Role Of TATA Box Sequence And Orientation In Determining RNA ...
-
What Is A TATA Box? - AAT Bioquest
-
Design Of TATA Box-binding Protein/zinc Finger Fusions For ... - PNAS
-
Role Of TATA Box Sequence And Orientation In Determining ... - NCBI
-
The TATA Box Regulates TATA-binding Protein (TBP) Dynamics In Vivo
-
Study On Interaction Between TATA-Box Binding Protein (TBP ...
-
TATA-box Binding Protein (IPR000814) - InterPro Entry - EMBL-EBI

