Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.[1]
A variety of oxidants can be used.
Stages in the oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates
Almost all industrial scale oxidations use oxygen or air as the oxidant.[2]
Through a variety of mechanisms, the removal of a hydride equivalent converts a primary or secondary alcohol to an aldehyde or ketone, respectively. The oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (gem-diol, R-CH(OH)2) by reaction with water. Thus, the oxidation of a primary alcohol at the aldehyde level without further oxidation to the carboxylic acid is possible by performing the reaction in absence of water, so that no aldehyde hydrate can be formed.
Oxidation of alcohols to aldehydes and ketones
To aldehydes and ketones
[edit]
In industry
[edit]
The largest operations involve the oxidation of methanol and ethanol to formaldehyde and acetaldehyde, which are produced on million ton scale annually. Both processes use O2 as the oxidant. Methanol oxidation employs a molybdenum oxide-based catalyst. Other large scale aldehydes and ketones are produced by autoxidation of hydrocarbons: benzaldehyde from toluene, acrolein from propylene, acetone from cumene, cyclohexanone from cyclohexanol.[2]
Laboratory
[edit]
In teaching laboratories and small scale operations, many reagents have been developed for the oxidation of secondary alcohols to ketones and primary alcohols to aldehydes. Allylic and benzylic alcohols are especially prone to oxidation. Aldehydes are susceptible to over oxidation to carboxylic acids.
Chromium(VI) reagents
[edit]
Chromium(VI) reagents are commonly used for these oxidations. One family of Cr(VI) reagents employs the complex CrO3(pyridine)2.[3]
Sarett's reagent: a solution of CrO3(pyridine)2 in pyridine. It was popularized for selective oxidation of primary and secondary alcohols to carbonyl compounds.
Collins reagent is a solution of the same CrO3(pyridine)2 but in dichloromethane. The Ratcliffe variant of Collins reagent relates to details of the preparation of this solution, i.e., the addition of chromium trioxide to a solution of pyridine in methylene chloride.[4]
A second family of Cr(VI) reagents are salts, featuring the pyridinium cation (C5H5NH+).
pyridinium dichromate (PDC) is the pyridium salt of dichromate, [Cr2O7]2-.
pyridinium chlorochromate (PCC) is the pyridinium salt of [CrO3Cl]−.
These salts are less reactive, more easily handled, and more selective than Collins reagent in oxidations of alcohols.
The above reagents represent improvements over the older Jones reagent, a solution of chromium trioxide in aqueous sulfuric acid.
Dess–Martin and related oxidations
[edit]
The Dess–Martin periodinane is a mild oxidant for the conversion of alcohols to aldehydes or ketones.[5] The reaction is performed under standard conditions, at room temperature, most often in dichloromethane. The reaction takes between half an hour and two hours to complete. The product is then separated from the spent periodinane.[6] Many iodosyl-based oxidants have been developed, e.g. IBX.
Swern oxidation
[edit]
Swern oxidation uses oxalyl chloride, dimethylsulfoxide, and an organic base, such as triethylamine.
The by-products are dimethyl sulfide (Me2S), carbon monoxide (CO), carbon dioxide (CO2) and – when triethylamine is used as base – triethylammonium chloride (C6H15NHCl).
The related N-tert-Butylbenzenesulfinimidoyl chloride combines both the sulfur(IV), the base, and the activating Lewis acid in one molecule.
Oppenauer oxidation
[edit] Main article: Oppenauer oxidation
This seldom-used method interconverts alcohols and carbonyls.
Niche methods
[edit]
Ley oxidation uses NMO as the stoichiometric oxidant with tetrapropylammonium perruthenate as a catalyst.
Fétizon oxidation, also a seldom-used method, uses silver carbonate supported on Celite. This reagent operates through single electron oxidation by the silver cations.
Another method is the oxoammonium-catalyzed oxidation. TEMPO exhibits a strong, pH-dependent selectivity for either primary or secondary alcohols; but the effect is primarily steric and other N-oxides behave differently.
Additionally, sodium hypochlorite (or household bleach) in acetone has been reported for efficient conversion of secondary alcohols in the presence of primary alcohols (Stevens oxidation).[7]
Soluble transition metal complexes catalyze the oxidation of alcohols by presence of dioxygen or another terminal oxidant.[8]
Oxidation of diols
[edit]Oxidative cleavage of carbon-carbon bond in 1,2-diols
The largest scale oxidation of 1,2-diols gives glyoxal from ethylene glycol. The conversion uses air or sometimes nitric acid.[2]
In the laboratory, vicinal diols suffer oxidative breakage at a carbon-carbon bond with some oxidants such as sodium periodate (NaIO4), (diacetoxyiodo)benzene (PhI(OAc)2)[9] or lead tetraacetate (Pb(OAc)4), resulting in generation of two carbonyl groups. The reaction is also known as glycol cleavage.
To carboxylic acids
[edit]
In industry
[edit]
The oxidation of primary alcohols to carboxylic acids can be carried out using a variety of reagents, but O2/air and nitric acid dominate as the oxidants on a commercial scale. Large scale oxidations of this type are used for the conversion of cyclohexanol alone or as a mixture with cyclohexanone to adipic acid. Similarly cyclododecanol is converted to the 12-carbon dicarboxylic acid. 3,5,5-Trimethylcyclohexanol is similarly oxidized to trimethyladipic acid.[2]
Many specialty reagents have been developed for laboratory scale oxidations of alcohols to carboxylic acids.
Potassium permanganate
[edit]
Potassium permanganate (KMnO4) oxidizes primary alcohols to carboxylic acids very efficiently. This reaction, which was first described in detail by Fournier,[10][11] is typically carried out by adding KMnO4 to a solution or suspension of the alcohol in an alkaline aqueous solution. For the reaction to proceed efficiently, the alcohol must be at least partially dissolved in the aqueous solution. This can be facilitated by the addition of an organic co-solvent such as dioxane, pyridine, acetone or t-BuOH. KMnO4 reacts with many functional groups, such as secondary alcohols, 1,2-diols, aldehydes, alkenes, oximes, sulfides and thiols, and carbon-carbon double bonds. Thus, selectivity is an issue.
Ciufolini and Swaminathan [12] oxidized a primary alcohol to carboxylic acid with KMnO4 in aqueous NaOH during the obtention of a rare amino acid derivative needed for the preparation of antibiotics isolated from Actinomadura luzonensis, a microorganism found in a soil sample collected in Luzon island in the Philippines
Jones oxidation
[edit] Main article: Jones oxidation
The so-called Jones reagent, prepared from chromium trioxide (CrO3) and aqueous sulfuric acid, oxidizes alcohols to a carboxylic acid. The protocol frequently affords substantial amounts of esters.[13] Problems are the toxicity and environmental unfriendliness of the reagent. Catalytic variant, involving treatment with excess of periodic acid (H5IO6) have been described.[14]
Crimmins and DeBaillie[15]
Two-step oxidation of alcohols to acids via isolated aldehydes
[edit]
As a lot of the aforementioned conditions for the oxidations of primary alcohols to acids are harsh and not compatible with common protection groups, organic chemists often use a two-step procedure for the oxidation to acids. The alcohol is oxidized to an aldehyde using one of the many procedures above. This sequence is often used in natural product synthesis as in their synthesis of platencin.[16]
Niche methods and reagents
[edit]
Ruthenium tetroxide is an aggressive, seldom-used agent that allows mild reaction conditions.
Heyns oxidation.[17]
The use of chlorites as terminal oxidants in conjunction with both hypochlorites and TEMPO gives carboxylic acids without chlorination side products.[18] The reaction is usually carried out in two steps in the same pot: partial oxidation is effected with TEMPO and hypochlorite, then chlorite is added to complete the oxidation. Only primary alcohol oxidation is observed. In conjunction with Sharpless dihydroxylation, this method can be used to generate enantiopure α-hydroxy acids.[19]
The Pinnick oxidation uses sodium chlorite.[20]
References
[edit]
^Burton, George et al. (2000). Salters Advanced Chemistry: Chemical (2nd ed.). Heinemann. ISBN 0-435-63120-9
^ abcdTeles, J. Henrique; Hermans, Ive; Franz, Gerhard; Sheldon, Roger A. (2015). "Oxidation". Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–103. doi:10.1002/14356007.a18_261.pub2. ISBN 978-3-527-30385-4.
^"Chromium-based Reagents". Oxidation of Alcohols to Aldehydes and Ketones. Basic Reactions in Organic Synthesis. 2006. pp. 1–95. doi:10.1007/0-387-25725-X_1. ISBN 0-387-23607-4.
^J. C. Collins, W.W. Hess (1972). "Aldehydes from Primary Alcohols by Oxidation with Chromium Trioxide: Heptanal". Organic Syntheses. 52: 5. doi:10.15227/orgsyn.052.0005.
^Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–87.
^J. S. Yadav, et al. "Recyclable 2nd generation ionic liquids as green solvents for the oxidation of alcohols with hypervalent iodine reagents", Tetrahedron, 2004, 60, 2131–35
^Stevens R, Chapman KT, Weller HN (1980). "Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones". Journal of Organic Chemistry. 45 (10): 2030–2032. doi:10.1021/jo01298a066.
^Parmeggiani, Camilla; Cardona, Francesca (2012-01-03). "Transition metal based catalysts in the aerobic oxidation of alcohols". Green Chemistry. 14 (3): 547–564. doi:10.1039/C2GC16344F. ISSN 1463-9270.
^Nicolaou KC, Adsool VA, Hale CR (April 2010). "An expedient procedure for the oxidative cleavage of olefinic bonds with PhI(OAc)2, NMO, and catalytic OsO4". Organic Letters. 12 (7): 1552–5. doi:10.1021/ol100290a. PMC 2848477. PMID 20192259.
^Fournier, H.M. (1907). "Transformation des alcools primaires saturès en acides monobasiques correspondants". C. R. Acad. Sci.: 331.
^Fournier, H.M. (20 July 1909). "Sur la préparation des acides gras et de leurs anhydres". Bull. Soc. Chim. Fr.: 920.
^Ciufolini, M.A.; Swaminathan, S. (1989). "Synthesis of a model depsipeptide segment of Luzopeptins (BBM 928), potent antitumor and antiretroviral antibiotics". Tetrahedron Lett. 30 (23): 3027. doi:10.1016/S0040-4039(00)99393-6.
^"Chromium-based Reagents". Oxidation of Alcohols to Aldehydes and Ketones. Basic Reactions in Organic Synthesis. 2006. pp. 1–95. doi:10.1007/0-387-25725-X_1. ISBN 0-387-23607-4.
^Crimmins, M.T. & DeBaillie, A.C. (2006). "Enantioselective Total Synthesis of Bistramide A". J. Am. Chem. Soc. 128 (15): 4936–7. doi:10.1021/ja057686l. PMC 2546575. PMID 16608311.
^Nicolaou K.C.; Scott Tria G.; Edmonds D. J. (2008). "Total Synthesis of Platencin". Angew. Chem. 120 (9): 1804. doi:10.1002/ange.200800066.
^Marcos Fernández; Gabriel Tojo (2006). Oxidation of Primary Alcohols to Carboxylic Acids: A Guide to Current Common Practice (Basic Reactions in Organic Synthesis). Berlin: Springer. ISBN 0-387-35431-X.
^Song, Z. J.; Zhao, M.; Desmond, R.; Devine, P.; Tschaen, D. M.; Tillyer, R.; Frey, L.; Heid, R.; Xu, F.; Foster, B.; Li, J.; Reamer, R.; Volante, R.; Grabowski, E. J. J.; Dolling, U. H.; Reider, P. J.; Okada, S.; Kato, Y.; Mano, E. J. Org. Chem. 1999, 64, 9658.
^Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D.; Zhang, X. L. J. Org. Chem. 1992, 57, 2768.
^Bal B.S.; Childers, Jr. W.E.; Pinnick H.W. (1981). "Oxidation of α,β-unsaturated aldehydes". Tetrahedron (abstract). 37 (11): 2091. doi:10.1016/S0040-4020(01)97963-3.
v
t
e
Alcohols
By consumption
Alcohols found inalcoholic drinks
1-Propanol
2-Methyl-1-butanol
Ethanol
Isoamyl alcohol
Isobutanol
Phenethyl alcohol
tert-Amyl alcohol
tert-Butyl alcohol
Tryptophol
Medical alcohol
Ethchlorvynol
Methylpentynol
Methanol poisoning
Ethanol
Toxic alcohols
Isopropyl alcohol
Methanol
Primaryalcohols (1°)
Methanol
4-Methylcyclohexanemethanol
Aminomethanol
Cyclohexylmethanol
Methoxymethanol
Methylazoxymethanol
Trifluoromethanol
Ethanol
1-Aminoethanol
2,2,2-Trichloroethanol
2,2,2-Trifluoroethanol
2-(2-Ethoxyethoxy)ethanol
2-(2-Methoxyethoxy)ethanol
2-(2-Methoxyethoxy)ethanol
2-Butoxyethanol
2-Chloroethanol
2-Ethoxyethanol
2-Fluoroethanol
2-Mercaptoethanol
2-Methoxyethanol
Aminoethylethanolamine
Diethylethanolamine
Dimethylethanolamine
Ethanol
Ethanolamine
N,N-Diisopropylaminoethanol
N-Methylethanolamine
Phenoxyethanol
Tribromoethanol
Butanol
2-Methyl-1-butanol
Isobutanol
n-Butanol
Straight-chainsaturatedC1 — C9
Methanol
Ethanol
1-Propanol
1-Butanol
1-Pentanol
1-Hexanol
1-Heptanol
1-Octanol (capryl)
1-Nonanol (pelargonic)
Straight-chainsaturatedC10 — C19
1-Decanol (capric)
1-Undecanol (hendecyl)
1-Dodecanol (lauryl)
1-Tridecanol
1-Tetradecanol (myristyl)
1-Pentadecanol
1-Hexadecanol (cetyl / palmityl)
1-Heptadecanol
1-Octadecanol (stearyl)
1-Nonadecanol
Straight-chainsaturatedC20 — C29
1-Icosanol (arachidyl)
1-Heneicosanol
1-Docosanol (behenyl)
1-Tricosanol
1-Tetracosanol (lignoceryl)
1-Pentacosanol
1-Hexacosanol (ceryl)
1-Heptacosanol
1-Octacosanol (cluytyl / montanyl)
1-Nonacosanol
Straight-chainsaturatedC30 — C39
1-Triacontanol (melissyl / myricyl)
1-Hentriacontanol
1-Dotriacontanol (lacceryl)
1-Tritriacontanol
1-Tetratriacontanol (geddyl)
1-Pentatriacontanol
1-Hexatriacontanol
1-Heptatriacontanol
1-Octatriacontanol
1-Nonatriacontanol
Straight-chainsaturatedC40 — C49
1-Tetracontanol
1-Hentetracontanol
1-Dotetracontanol
1-Tritetracontanol
1-Tetratetracontanol
1-Pentatetracontanol
1-Hexatetracontanol
1-Heptatetracontanol
1-Octatetracontanol
1-Nonatetracontanol
2-Ethylhexanol
Allyl alcohol
Anisyl alcohol
Benzyl alcohol
Cinnamyl alcohol
Crotyl alcohol
Furfuryl alcohol
Isoamyl alcohol
Neopentyl alcohol
Nicotinyl alcohol
Perillyl alcohol
Phenethyl alcohol
Prenol
Propargyl alcohol
Salicyl alcohol
Tryptophol
Vanillyl alcohol
Veratrole alcohol
Secondary alcohols (2°)
1-Phenylethanol
2-Butanol
2-Deoxyerythritol
2-Heptanol
3-Heptanol
2-Hexanol
3-Hexanol
3-Methyl-2-butanol
2-Nonanol
2-Octanol
2-Pentanol
3-Pentanol
Cyclohexanol
Cyclopentanol
Cyclopropanol
Diphenylmethanol
Isopropanol
Pinacolyl alcohol
Pirkle's alcohol
Propylene glycol methyl ether
Tertiary alcohols (3°)
2-Methyl-2-pentanol
2-Methylheptan-2-ol
2-Methylhexan-2-ol
3-Methyl-3-pentanol
3-Methyloctan-3-ol
Diacetone alcohol
Ethchlorvynol
Methylpentynol
Nonafluoro-tert-butyl alcohol
tert-Amyl alcohol
tert-Butyl alcohol
Triphenylethanol
Triphenylmethanol
Hydric alcohols
Monohydric alcohols
Methanol (C1)
Ethanol (C2)
Isopropanol (C3)
1-Butanol (C4)
1-Pentanol (C5)
Cetyl alcohol (C16)
Dihydric alcohols
Ethylene glycol
Propylene glycol
Trihydric alcohols
Glycerol
Polyhydric alcohols (sugar alcohols)
Pentaerythritol
Ethylene glycol (C2)
Glycerol, Propylene glycol (C3)
Erythritol, Threitol (C4)
Xylitol (C5)
Mannitol, Sorbitol (C6)
Volemitol (C7)
Amyl alcohols
2,2-Dimethylpropan-1-ol
2-Methylbutan-1-ol
2-Methylbutan-2-ol
3-Methylbutan-1-ol
3-Methylbutan-2-ol
Pentan-1-ol
Pentan-2-ol
Pentan-3-ol
Aromatic alcohols
Benzyl alcohol
2,4-Dichlorobenzyl alcohol
3-Nitrobenzyl alcohol
Saturatedfatty alcohols
Cetostearyl alcohol
Decanol
Lauryl alcohol
Myristyl alcohol
Nonanol
Octanol
Tridecanol
Undecanol
Branched andunsaturatedfatty alcohols
3-Methyl-3-pentanol
Erucyl alcohol
Linolenyl alcohol
Linoleyl alcohol
Oleyl alcohol
Palmitoleyl alcohol
tert-Amyl alcohol
tert-Butyl alcohol
Sugar alcohols
C1 — C7
Methylene glycol (C1)
Ethylene glycol (C2)
Glycerol (C3)
Erythritol (C4)
Threitol (C4)
Arabitol (C5)
Ribitol (C5)
Xylitol (C5)
Mannitol (C6)
Sorbitol (C6)
Galactitol (C6)
Iditol (C6)
Volemitol (C7)
Deoxy sugar alcohols
Fucitol
Cyclic sugar alcohols
Inositol
Glycylglycitols
Maltitol
Lactitol
Isomalt
Maltotriitol
Maltotetraitol
Polyglycitol
Terpene alcohols
Monoterpene alcohols
Borneol
Citronellol
Geraniol
Linalool
Menthol
Nerol
Rhodinol
Terpineol
Sesquiterpene alcohols
Bisabolol
Farnesol
Nerolidol
Patchoulol
Diterpene alcohols
Phytol
Dialcohols
1,4-Butanediol
1,5-Pentanediol
2-Methyl-2-propyl-1,3-propanediol
Diethylpropanediol
Ethylene glycol
Trialcohols
Glycerol
Sterols
Cholesterol
Ergosterol
Lanosterol
β-Sitosterol
Stigmasterol
Fluoroalcohols
1,3-Difluoro-2-propanol
2,2,2-Trifluoroethanol
2-Fluoroethanol
Nonafluoro-tert-butyl alcohol
Trifluoromethanol
Preparations
Substitution of haloalkane
Carbonyl reduction
Ether cleavage
Hydrolysis of epoxide
Hydration of alkene
Ziegler process
Reactions
Deprotonation
Protonation
Alcohol oxidation
Glycol cleavage
Nucleophilic substitution
Fischer–Speier esterification
Williamson ether synthesis
Elimination reaction
Nucleophilic substitution of carbonyl group
Friedel-Crafts alkylation
Nucleophilic conjugate addition
Transesterification
Category
v
t
e
Topics in organic reactions
Addition reaction
Elimination reaction
Polymerization
Reagents
Rearrangement reaction
Redox reaction
Regioselectivity
Stereoselectivity
Stereospecificity
Substitution reaction
A value
Alpha effect
Annulene
Anomeric effect
Antiaromaticity
Aromatic ring current
Aromaticity
Baird's rule
Baker–Nathan effect
Baldwin's rules
Bema Hapothle
Beta-silicon effect
Bicycloaromaticity
Bredt's rule
Bürgi–Dunitz angle
Catalytic resonance theory
Charge remote fragmentation
Charge-transfer complex
Clar's rule
Conformational isomerism
Conjugated system
Conrotatory and disrotatory
Curtin–Hammett principle
Dynamic binding (chemistry)
Edwards equation
Effective molarity
Electromeric effect
Electron-rich
Electron-withdrawing group
Electronic effect
Electrophile
Evelyn effect
Flippin–Lodge angle
Free-energy relationship
Grunwald–Winstein equation
Hammett acidity function
Hammett equation
George S. Hammond
Hammond's postulate
Homoaromaticity
Hückel's rule
Hyperconjugation
Inductive effect
Kinetic isotope effect
LFER solvent coefficients (data page)
Marcus theory
Markovnikov's rule
Möbius aromaticity
Möbius–Hückel concept
More O'Ferrall–Jencks plot
Negative hyperconjugation
Neighbouring group participation
2-Norbornyl cation
Nucleophile
Kennedy J. P. Orton
Passive binding
Phosphaethynolate
Polar effect
Polyfluorene
Ring strain
Σ-aromaticity
Spherical aromaticity
Spiroaromaticity
Steric effects
Superaromaticity
Swain–Lupton equation
Taft equation
Thorpe–Ingold effect
Vinylogy
Walsh diagram
Woodward–Hoffmann rules
Woodward's rules
Y-aromaticity
Yukawa–Tsuno equation
Zaitsev's rule
Σ-bishomoaromaticity
List of organic reactions
Carbon-carbon bond forming reactions
Acetoacetic ester synthesis
Acyloin condensation
Aldol condensation
Aldol reaction
Alkane metathesis
Alkyne metathesis
Alkyne trimerisation
Alkynylation
Allan–Robinson reaction
Arndt–Eistert reaction
Auwers synthesis
Aza-Baylis–Hillman reaction
Barbier reaction
Barton–Kellogg reaction
Baylis–Hillman reaction
Benary reaction
Bergman cyclization
Biginelli reaction
Bingel reaction
Blaise ketone synthesis
Blaise reaction
Blanc chloromethylation
Bodroux–Chichibabin aldehyde synthesis
Bouveault aldehyde synthesis
Bucherer–Bergs reaction
Buchner ring expansion
Cadiot–Chodkiewicz coupling
Carbonyl allylation
Carbonyl olefin metathesis
Castro–Stephens coupling
Chan rearrangement
Chan–Lam coupling
Claisen condensation
Claisen rearrangement
Claisen-Schmidt condensation
Combes quinoline synthesis
Corey–Fuchs reaction
Corey–House synthesis
Coupling reaction
Cross-coupling reaction
Cross dehydrogenative coupling
Cross-coupling partner
Dakin–West reaction
Darzens reaction
Diels–Alder reaction
Doebner reaction
Wulff–Dötz reaction
Ene reaction
Enyne metathesis
Ethenolysis
Favorskii reaction
Ferrier carbocyclization
Friedel–Crafts reaction
Fujimoto–Belleau reaction
Fujiwara–Moritani reaction
Fukuyama coupling
Gabriel–Colman rearrangement
Gattermann reaction
Glaser coupling
Grignard reaction
Grignard reagent
Hammick reaction
Heck reaction
Henry reaction
Heterogeneous metal catalyzed cross-coupling
High dilution principle
Hiyama coupling
Homologation reaction
Horner–Wadsworth–Emmons reaction
Hydrocyanation
Hydrovinylation
Hydroxymethylation
Ivanov reaction
Johnson–Corey–Chaykovsky reaction
Julia olefination
Julia–Kocienski olefination
Kauffmann olefination
Knoevenagel condensation
Knorr pyrrole synthesis
Kolbe–Schmitt reaction
Kowalski ester homologation
Kulinkovich reaction
Kumada coupling
Liebeskind–Srogl coupling
Malonic ester synthesis
Mannich reaction
McMurry reaction
Meerwein arylation
Methylenation
Michael reaction
Minisci reaction
Mizoroki-Heck vs. Reductive Heck
Nef isocyanide reaction
Nef synthesis
Negishi coupling
Nierenstein reaction
Nitro-Mannich reaction
Nozaki–Hiyama–Kishi reaction
Olefin conversion technology
Olefin metathesis
Palladium–NHC complex
Passerini reaction
Peterson olefination
Pfitzinger reaction
Piancatelli rearrangement
Pinacol coupling reaction
Prins reaction
Quelet reaction
Ramberg–Bäcklund reaction
Rauhut–Currier reaction
Reformatsky reaction
Reimer–Tiemann reaction
Rieche formylation
Ring-closing metathesis
Robinson annulation
Sakurai reaction
Seyferth–Gilbert homologation
Shapiro reaction
Sonogashira coupling
Stetter reaction
Stille reaction
Stollé synthesis
Stork enamine alkylation
Suzuki reaction
Takai olefination
Thermal rearrangement of aromatic hydrocarbons
Thorpe reaction
Ugi reaction
Ullmann reaction
Wagner-Jauregg reaction
Weinreb ketone synthesis
Wittig reaction
Wurtz reaction
Wurtz–Fittig reaction
Zincke–Suhl reaction
Homologation reactions
Arndt–Eistert reaction
Hooker reaction
Kiliani–Fischer synthesis
Kowalski ester homologation
Methoxymethylenetriphenylphosphorane
Seyferth–Gilbert homologation
Wittig reaction
Olefination reactions
Bamford–Stevens reaction
Barton–Kellogg reaction
Boord olefin synthesis
Chugaev elimination
Cope reaction
Corey–Winter olefin synthesis
Dehydrohalogenation
Elimination reaction
Grieco elimination
Hofmann elimination
Horner–Wadsworth–Emmons reaction
Hydrazone iodination
Julia olefination
Julia–Kocienski olefination
Kauffmann olefination
McMurry reaction
Peterson olefination
Ramberg–Bäcklund reaction
Shapiro reaction
Takai olefination
Wittig reaction
Carbon-heteroatom bond forming reactions
Azo coupling
Bartoli indole synthesis
Boudouard reaction
Cadogan–Sundberg indole synthesis
Diazonium compound
Esterification
Grignard reagent
Haloform reaction
Hegedus indole synthesis
Hurd–Mori 1,2,3-thiadiazole synthesis
Kharasch–Sosnovsky reaction
Knorr pyrrole synthesis
Leimgruber–Batcho indole synthesis
Mukaiyama hydration
Nenitzescu indole synthesis
Oxymercuration reaction
Reed reaction
Schotten–Baumann reaction
Ullmann condensation
Williamson ether synthesis
Yamaguchi esterification
Degradation reactions
Barbier–Wieland degradation
Bergmann degradation
Edman degradation
Emde degradation
Gallagher–Hollander degradation
Hofmann rearrangement
Hooker reaction
Isosaccharinic acid
Marker degradation
Ruff degradation
Strecker degradation
Von Braun amide degradation
Weerman degradation
Wohl degradation
Organic redox reactions
Acyloin condensation
Adkins–Peterson reaction
Akabori amino-acid reaction
Alcohol oxidation
Algar–Flynn–Oyamada reaction
Amide reduction
Andrussow process
Angeli–Rimini reaction
Aromatization
Autoxidation
Baeyer–Villiger oxidation
Barton–McCombie deoxygenation
Bechamp reduction
Benkeser reaction
Bergmann degradation
Birch reduction
Bohn–Schmidt reaction
Bosch reaction
Bouveault–Blanc reduction
Boyland–Sims oxidation
Cannizzaro reaction
Carbonyl reduction
Clemmensen reduction
Collins oxidation
Corey–Itsuno reduction
Corey–Kim oxidation
Corey–Winter olefin synthesis
Criegee oxidation
Dakin oxidation
Davis oxidation
Deoxygenation
Dess–Martin oxidation
DNA oxidation
Elbs persulfate oxidation
Emde degradation
Eschweiler–Clarke reaction
Étard reaction
Fischer–Tropsch process
Fleming–Tamao oxidation
Fukuyama reduction
Ganem oxidation
Glycol cleavage
Griesbaum coozonolysis
Grundmann aldehyde synthesis
Haloform reaction
Hydrogenation
Hydrogenolysis
Hydroxylation
Jones oxidation
Kiliani–Fischer synthesis
Kolbe electrolysis
Kornblum oxidation
Kornblum–DeLaMare rearrangement
Leuckart reaction
Ley oxidation
Lindgren oxidation
Lipid peroxidation
Lombardo methylenation
Luche reduction
Markó–Lam deoxygenation
McFadyen–Stevens reaction
Meerwein–Ponndorf–Verley reduction
Methionine sulfoxide
Miyaura borylation
Mozingo reduction
Noyori asymmetric hydrogenation
Omega oxidation
Oppenauer oxidation
Oxygen rebound mechanism
Ozonolysis
Parikh–Doering oxidation
Pinnick oxidation
Prévost reaction
Reduction of nitro compounds
Reductive amination
Riley oxidation
Rosenmund reduction
Rubottom oxidation
Sabatier reaction
Sarett oxidation
Selenoxide elimination
Shapiro reaction
Sharpless asymmetric dihydroxylation
Epoxidation of allylic alcohols
Sharpless epoxidation
Sharpless oxyamination
Stahl oxidation
Staudinger reaction
Stephen aldehyde synthesis
Swern oxidation
Transfer hydrogenation
Wacker process
Wharton reaction
Whiting reaction
Wohl–Aue reaction
Wolff–Kishner reduction
Wolffenstein–Böters reaction
Zinin reaction
Rearrangement reactions
1,2-rearrangement
1,2-Wittig rearrangement
2,3-sigmatropic rearrangement
2,3-Wittig rearrangement
Achmatowicz reaction
Alkyne zipper reaction
Allen–Millar–Trippett rearrangement
Allylic rearrangement
Alpha-ketol rearrangement
Amadori rearrangement
Arndt–Eistert reaction
Aza-Cope rearrangement
Baker–Venkataraman rearrangement
Bamberger rearrangement
Banert cascade
Beckmann rearrangement
Benzilic acid rearrangement
Bergman cyclization
Bergmann degradation
Boekelheide reaction
Brook rearrangement
Buchner ring expansion
Carroll rearrangement
Chan rearrangement
Claisen rearrangement
Cope rearrangement
Corey–Fuchs reaction
Cornforth rearrangement
Criegee rearrangement
Curtius rearrangement
Demjanov rearrangement
Di-π-methane rearrangement
Dimroth rearrangement
Divinylcyclopropane-cycloheptadiene rearrangement
Dowd–Beckwith ring-expansion reaction
Electrocyclic reaction
Ene reaction
Enyne metathesis
Favorskii reaction
Favorskii rearrangement
Ferrier carbocyclization
Ferrier rearrangement
Fischer–Hepp rearrangement
Fries rearrangement
Fritsch–Buttenberg–Wiechell rearrangement
Gabriel–Colman rearrangement
Group transfer reaction
Halogen dance rearrangement
Hayashi rearrangement
Hofmann rearrangement
Hofmann–Martius rearrangement
Ireland–Claisen rearrangement
Jacobsen rearrangement
Kornblum–DeLaMare rearrangement
Kowalski ester homologation
Lobry de Bruyn–Van Ekenstein transformation
Lossen rearrangement
McFadyen–Stevens reaction
McLafferty rearrangement
Meyer–Schuster rearrangement
Mislow–Evans rearrangement
Mumm rearrangement
Myers allene synthesis
Nazarov cyclization reaction
Neber rearrangement
Newman–Kwart rearrangement
Overman rearrangement
Oxy-Cope rearrangement
Pericyclic reaction
Piancatelli rearrangement
Pinacol rearrangement
Pummerer rearrangement
Ramberg–Bäcklund reaction
Ring expansion and contraction
Ring-closing metathesis
Rupe reaction
Schmidt reaction
Semipinacol rearrangement
Seyferth–Gilbert homologation
Sigmatropic reaction
Skattebøl rearrangement
Smiles rearrangement
Sommelet–Hauser rearrangement
Stevens rearrangement
Stieglitz rearrangement
Thermal rearrangement of aromatic hydrocarbons
Tiffeneau–Demjanov rearrangement
Vinylcyclopropane rearrangement
Wagner–Meerwein rearrangement
Wallach rearrangement
Weerman degradation
Westphalen–Lettré rearrangement
Willgerodt rearrangement
Wolff rearrangement
Ring forming reactions
1,3-Dipolar cycloaddition
Annulation
Azide-alkyne Huisgen cycloaddition
Baeyer–Emmerling indole synthesis
Bartoli indole synthesis
Bergman cyclization
Biginelli reaction
Bischler–Möhlau indole synthesis
Bischler–Napieralski reaction
Blum–Ittah aziridine synthesis
Bobbitt reaction
Bohlmann–Rahtz pyridine synthesis
Borsche–Drechsel cyclization
Bucherer carbazole synthesis
Bucherer–Bergs reaction
Cadogan–Sundberg indole synthesis
Camps quinoline synthesis
Chichibabin pyridine synthesis
Cook–Heilbron thiazole synthesis
Cycloaddition
Darzens reaction
Davis–Beirut reaction
De Kimpe aziridine synthesis
Debus–Radziszewski imidazole synthesis
Dieckmann condensation
Diels–Alder reaction
Feist–Benary synthesis
Ferrario–Ackermann reaction
Fiesselmann thiophene synthesis
Fischer indole synthesis
Fischer oxazole synthesis
Friedländer synthesis
Gewald reaction
Graham reaction
Hantzsch pyridine synthesis
Hegedus indole synthesis
Hemetsberger indole synthesis
Hofmann–Löffler reaction
Hurd–Mori 1,2,3-thiadiazole synthesis
Iodolactonization
Isay reaction
Jacobsen epoxidation
Johnson–Corey–Chaykovsky reaction
Knorr pyrrole synthesis
Knorr quinoline synthesis
Kröhnke pyridine synthesis
Kulinkovich reaction
Larock indole synthesis
Madelung synthesis
Nazarov cyclization reaction
Nenitzescu indole synthesis
Niementowski quinazoline synthesis
Niementowski quinoline synthesis
Paal–Knorr synthesis
Paternò–Büchi reaction
Pechmann condensation
Petrenko-Kritschenko piperidone synthesis
Pictet–Spengler reaction
Pomeranz–Fritsch reaction
Prilezhaev reaction
Pschorr cyclization
Reissert indole synthesis
Ring-closing metathesis
Robinson annulation
Sharpless epoxidation
Simmons–Smith reaction
Skraup reaction
Urech hydantoin synthesis
Van Leusen reaction
Wenker synthesis
Cycloaddition
1,3-Dipolar cycloaddition
4+4 Photocycloaddition
(4+3) cycloaddition
6+4 Cycloaddition
Alkyne trimerisation
Aza-Diels–Alder reaction
Azide-alkyne Huisgen cycloaddition
Bradsher cycloaddition
Cheletropic reaction
Conia-ene reaction
Cyclopropanation
Diazoalkane 1,3-dipolar cycloaddition
Diels–Alder reaction
Enone–alkene cycloadditions
Hexadehydro Diels–Alder reaction
Intramolecular Diels–Alder cycloaddition
Inverse electron-demand Diels–Alder reaction
Ketene cycloaddition
McCormack reaction
Metal-centered cycloaddition reactions
Nitrone-olefin (3+2) cycloaddition
Oxo-Diels–Alder reaction
Ozonolysis
Pauson–Khand reaction
Povarov reaction
Prato reaction
Retro-Diels–Alder reaction
Staudinger synthesis
Trimethylenemethane cycloaddition
Vinylcyclopropane (5+2) cycloaddition
Wagner-Jauregg reaction
Heterocycle forming reactions
Algar–Flynn–Oyamada reaction
Allan–Robinson reaction
Auwers synthesis
Bamberger triazine synthesis
Banert cascade
Barton–Zard reaction
Bernthsen acridine synthesis
Bischler–Napieralski reaction
Bobbitt reaction
Boger pyridine synthesis
Borsche–Drechsel cyclization
Bucherer carbazole synthesis
Bucherer–Bergs reaction
Chichibabin pyridine synthesis
Cook–Heilbron thiazole synthesis
Diazoalkane 1,3-dipolar cycloaddition
Einhorn–Brunner reaction
Erlenmeyer–Plöchl azlactone and amino-acid synthesis