Oxidation Of Secondary Alcohols To Ketones - Wikipedia

Chemical reaction

Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids.[1]

A variety of oxidants can be used.

Stages in the oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates

Almost all industrial scale oxidations use oxygen or air as the oxidant.[2]

Through a variety of mechanisms, the removal of a hydride equivalent converts a primary or secondary alcohol to an aldehyde or ketone, respectively. The oxidation of primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (gem-diol, R-CH(OH)2) by reaction with water. Thus, the oxidation of a primary alcohol at the aldehyde level without further oxidation to the carboxylic acid is possible by performing the reaction in absence of water, so that no aldehyde hydrate can be formed.

Oxidation of alcohols to aldehydes and ketones

To aldehydes and ketones

[edit]

In industry

[edit]

The largest operations involve the oxidation of methanol and ethanol to formaldehyde and acetaldehyde, which are produced on million ton scale annually. Both processes use O2 as the oxidant. Methanol oxidation employs a molybdenum oxide-based catalyst. Other large scale aldehydes and ketones are produced by autoxidation of hydrocarbons: benzaldehyde from toluene, acrolein from propylene, acetone from cumene, cyclohexanone from cyclohexanol.[2]

Laboratory

[edit]

In teaching laboratories and small scale operations, many reagents have been developed for the oxidation of secondary alcohols to ketones and primary alcohols to aldehydes. Allylic and benzylic alcohols are especially prone to oxidation. Aldehydes are susceptible to over oxidation to carboxylic acids.

Chromium(VI) reagents

[edit]

Chromium(VI) reagents are commonly used for these oxidations. One family of Cr(VI) reagents employs the complex CrO3(pyridine)2.[3]

  • Sarett's reagent: a solution of CrO3(pyridine)2 in pyridine. It was popularized for selective oxidation of primary and secondary alcohols to carbonyl compounds.
  • Collins reagent is a solution of the same CrO3(pyridine)2 but in dichloromethane. The Ratcliffe variant of Collins reagent relates to details of the preparation of this solution, i.e., the addition of chromium trioxide to a solution of pyridine in methylene chloride.[4]

A second family of Cr(VI) reagents are salts, featuring the pyridinium cation (C5H5NH+).

  • pyridinium dichromate (PDC) is the pyridium salt of dichromate, [Cr2O7]2-.
  • pyridinium chlorochromate (PCC) is the pyridinium salt of [CrO3Cl]−.

These salts are less reactive, more easily handled, and more selective than Collins reagent in oxidations of alcohols.

The above reagents represent improvements over the older Jones reagent, a solution of chromium trioxide in aqueous sulfuric acid.

[edit]

The Dess–Martin periodinane is a mild oxidant for the conversion of alcohols to aldehydes or ketones.[5] The reaction is performed under standard conditions, at room temperature, most often in dichloromethane. The reaction takes between half an hour and two hours to complete. The product is then separated from the spent periodinane.[6] Many iodosyl-based oxidants have been developed, e.g. IBX.

Swern oxidation

[edit]

Swern oxidation uses oxalyl chloride, dimethylsulfoxide, and an organic base, such as triethylamine.

The by-products are dimethyl sulfide (Me2S), carbon monoxide (CO), carbon dioxide (CO2) and – when triethylamine is used as base – triethylammonium chloride (C6H15NHCl).

The related N-tert-Butylbenzenesulfinimidoyl chloride combines both the sulfur(IV), the base, and the activating Lewis acid in one molecule.

Oppenauer oxidation

[edit] Main article: Oppenauer oxidation

This seldom-used method interconverts alcohols and carbonyls.

Niche methods

[edit]

Ley oxidation uses NMO as the stoichiometric oxidant with tetrapropylammonium perruthenate as a catalyst.

Fétizon oxidation, also a seldom-used method, uses silver carbonate supported on Celite. This reagent operates through single electron oxidation by the silver cations.

Another method is the oxoammonium-catalyzed oxidation. TEMPO exhibits a strong, pH-dependent selectivity for either primary or secondary alcohols; but the effect is primarily steric and other N-oxides behave differently.

Additionally, sodium hypochlorite (or household bleach) in acetone has been reported for efficient conversion of secondary alcohols in the presence of primary alcohols (Stevens oxidation).[7]

Soluble transition metal complexes catalyze the oxidation of alcohols by presence of dioxygen or another terminal oxidant.[8]

Oxidation of diols

[edit]
Oxidative cleavage of carbon-carbon bond in 1,2-diols

The largest scale oxidation of 1,2-diols gives glyoxal from ethylene glycol. The conversion uses air or sometimes nitric acid.[2]

In the laboratory, vicinal diols suffer oxidative breakage at a carbon-carbon bond with some oxidants such as sodium periodate (NaIO4), (diacetoxyiodo)benzene (PhI(OAc)2)[9] or lead tetraacetate (Pb(OAc)4), resulting in generation of two carbonyl groups. The reaction is also known as glycol cleavage.

To carboxylic acids

[edit]

In industry

[edit]

The oxidation of primary alcohols to carboxylic acids can be carried out using a variety of reagents, but O2/air and nitric acid dominate as the oxidants on a commercial scale. Large scale oxidations of this type are used for the conversion of cyclohexanol alone or as a mixture with cyclohexanone to adipic acid. Similarly cyclododecanol is converted to the 12-carbon dicarboxylic acid. 3,5,5-Trimethylcyclohexanol is similarly oxidized to trimethyladipic acid.[2]

Many specialty reagents have been developed for laboratory scale oxidations of alcohols to carboxylic acids.

Potassium permanganate

[edit]

Potassium permanganate (KMnO4) oxidizes primary alcohols to carboxylic acids very efficiently. This reaction, which was first described in detail by Fournier,[10][11] is typically carried out by adding KMnO4 to a solution or suspension of the alcohol in an alkaline aqueous solution. For the reaction to proceed efficiently, the alcohol must be at least partially dissolved in the aqueous solution. This can be facilitated by the addition of an organic co-solvent such as dioxane, pyridine, acetone or t-BuOH. KMnO4 reacts with many functional groups, such as secondary alcohols, 1,2-diols, aldehydes, alkenes, oximes, sulfides and thiols, and carbon-carbon double bonds. Thus, selectivity is an issue.

Ciufolini and Swaminathan [12] oxidized a primary alcohol to carboxylic acid with KMnO4 in aqueous NaOH during the obtention of a rare amino acid derivative needed for the preparation of antibiotics isolated from Actinomadura luzonensis, a microorganism found in a soil sample collected in Luzon island in the Philippines

Jones oxidation

[edit] Main article: Jones oxidation

The so-called Jones reagent, prepared from chromium trioxide (CrO3) and aqueous sulfuric acid, oxidizes alcohols to a carboxylic acid. The protocol frequently affords substantial amounts of esters.[13] Problems are the toxicity and environmental unfriendliness of the reagent. Catalytic variant, involving treatment with excess of periodic acid (H5IO6) have been described.[14]

Crimmins and DeBaillie[15]

Two-step oxidation of alcohols to acids via isolated aldehydes

[edit]

As a lot of the aforementioned conditions for the oxidations of primary alcohols to acids are harsh and not compatible with common protection groups, organic chemists often use a two-step procedure for the oxidation to acids. The alcohol is oxidized to an aldehyde using one of the many procedures above. This sequence is often used in natural product synthesis as in their synthesis of platencin.[16]

Niche methods and reagents

[edit]

Ruthenium tetroxide is an aggressive, seldom-used agent that allows mild reaction conditions.

Heyns oxidation.[17]

The use of chlorites as terminal oxidants in conjunction with both hypochlorites and TEMPO gives carboxylic acids without chlorination side products.[18] The reaction is usually carried out in two steps in the same pot: partial oxidation is effected with TEMPO and hypochlorite, then chlorite is added to complete the oxidation. Only primary alcohol oxidation is observed. In conjunction with Sharpless dihydroxylation, this method can be used to generate enantiopure α-hydroxy acids.[19]

The Pinnick oxidation uses sodium chlorite.[20]

References

[edit]
  1. ^ Burton, George et al. (2000). Salters Advanced Chemistry: Chemical (2nd ed.). Heinemann. ISBN 0-435-63120-9
  2. ^ a b c d Teles, J. Henrique; Hermans, Ive; Franz, Gerhard; Sheldon, Roger A. (2015). "Oxidation". Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–103. doi:10.1002/14356007.a18_261.pub2. ISBN 978-3-527-30385-4.
  3. ^ "Chromium-based Reagents". Oxidation of Alcohols to Aldehydes and Ketones. Basic Reactions in Organic Synthesis. 2006. pp. 1–95. doi:10.1007/0-387-25725-X_1. ISBN 0-387-23607-4.
  4. ^ J. C. Collins, W.W. Hess (1972). "Aldehydes from Primary Alcohols by Oxidation with Chromium Trioxide: Heptanal". Organic Syntheses. 52: 5. doi:10.15227/orgsyn.052.0005.
  5. ^ Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–87.
  6. ^ J. S. Yadav, et al. "Recyclable 2nd generation ionic liquids as green solvents for the oxidation of alcohols with hypervalent iodine reagents", Tetrahedron, 2004, 60, 2131–35
  7. ^ Stevens R, Chapman KT, Weller HN (1980). "Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones". Journal of Organic Chemistry. 45 (10): 2030–2032. doi:10.1021/jo01298a066.
  8. ^ Parmeggiani, Camilla; Cardona, Francesca (2012-01-03). "Transition metal based catalysts in the aerobic oxidation of alcohols". Green Chemistry. 14 (3): 547–564. doi:10.1039/C2GC16344F. ISSN 1463-9270.
  9. ^ Nicolaou KC, Adsool VA, Hale CR (April 2010). "An expedient procedure for the oxidative cleavage of olefinic bonds with PhI(OAc)2, NMO, and catalytic OsO4". Organic Letters. 12 (7): 1552–5. doi:10.1021/ol100290a. PMC 2848477. PMID 20192259.
  10. ^ Fournier, H.M. (1907). "Transformation des alcools primaires saturès en acides monobasiques correspondants". C. R. Acad. Sci.: 331.
  11. ^ Fournier, H.M. (20 July 1909). "Sur la préparation des acides gras et de leurs anhydres". Bull. Soc. Chim. Fr.: 920.
  12. ^ Ciufolini, M.A.; Swaminathan, S. (1989). "Synthesis of a model depsipeptide segment of Luzopeptins (BBM 928), potent antitumor and antiretroviral antibiotics". Tetrahedron Lett. 30 (23): 3027. doi:10.1016/S0040-4039(00)99393-6.
  13. ^ "Chromium-based Reagents". Oxidation of Alcohols to Aldehydes and Ketones. Basic Reactions in Organic Synthesis. 2006. pp. 1–95. doi:10.1007/0-387-25725-X_1. ISBN 0-387-23607-4.
  14. ^ Song, Z.J.; Zhao, M.; Desmond, R.; Devine, P.; Tschaen, D.M.; Tillyer, R.; Frey, L.; Heid, R.; Xu, F.; Foster, B.; Li, J.; Reamer, R.; Volante, R.; Grabowski, E.J.J.; Dolling, U.H.; Reider, P.J. (1999). "Practical Asymmetric Synthesis of an Endothelin Receptor Antagonist". J. Org. Chem. 64 (26): 9658. doi:10.1021/jo991292t.
  15. ^ Crimmins, M.T. & DeBaillie, A.C. (2006). "Enantioselective Total Synthesis of Bistramide A". J. Am. Chem. Soc. 128 (15): 4936–7. doi:10.1021/ja057686l. PMC 2546575. PMID 16608311.
  16. ^ Nicolaou K.C.; Scott Tria G.; Edmonds D. J. (2008). "Total Synthesis of Platencin". Angew. Chem. 120 (9): 1804. doi:10.1002/ange.200800066.
  17. ^ Marcos Fernández; Gabriel Tojo (2006). Oxidation of Primary Alcohols to Carboxylic Acids: A Guide to Current Common Practice (Basic Reactions in Organic Synthesis). Berlin: Springer. ISBN 0-387-35431-X.
  18. ^ Song, Z. J.; Zhao, M.; Desmond, R.; Devine, P.; Tschaen, D. M.; Tillyer, R.; Frey, L.; Heid, R.; Xu, F.; Foster, B.; Li, J.; Reamer, R.; Volante, R.; Grabowski, E. J. J.; Dolling, U. H.; Reider, P. J.; Okada, S.; Kato, Y.; Mano, E. J. Org. Chem. 1999, 64, 9658.
  19. ^ Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D.; Zhang, X. L. J. Org. Chem. 1992, 57, 2768.
  20. ^ Bal B.S.; Childers, Jr. W.E.; Pinnick H.W. (1981). "Oxidation of α,β-unsaturated aldehydes". Tetrahedron (abstract). 37 (11): 2091. doi:10.1016/S0040-4020(01)97963-3.
  • v
  • t
  • e
Alcohols
By consumption
Alcohols found inalcoholic drinks
  • 1-Propanol
  • 2-Methyl-1-butanol
  • Ethanol
  • Isoamyl alcohol
  • Isobutanol
  • Phenethyl alcohol
  • tert-Amyl alcohol
  • tert-Butyl alcohol
  • Tryptophol
Medical alcohol
  • Ethchlorvynol
  • Methylpentynol
  • Methanol poisoning
    • Ethanol
Toxic alcohols
  • Isopropyl alcohol
  • Methanol
Primaryalcohols (1°)
Methanol
  • 4-Methylcyclohexanemethanol
  • Aminomethanol
  • Cyclohexylmethanol
  • Methoxymethanol
  • Methylazoxymethanol
  • Trifluoromethanol
Ethanol
  • 1-Aminoethanol
  • 2,2,2-Trichloroethanol
  • 2,2,2-Trifluoroethanol
  • 2-(2-Ethoxyethoxy)ethanol
  • 2-(2-Methoxyethoxy)ethanol
  • 2-(2-Methoxyethoxy)ethanol
  • 2-Butoxyethanol
  • 2-Chloroethanol
  • 2-Ethoxyethanol
  • 2-Fluoroethanol
  • 2-Mercaptoethanol
  • 2-Methoxyethanol
  • Aminoethylethanolamine
  • Diethylethanolamine
  • Dimethylethanolamine
  • Ethanol
  • Ethanolamine
  • N,N-Diisopropylaminoethanol
  • N-Methylethanolamine
  • Phenoxyethanol
  • Tribromoethanol
Butanol
  • 2-Methyl-1-butanol
  • Isobutanol
  • n-Butanol
Straight-chainsaturatedC1 — C9
  • Methanol
  • Ethanol
  • 1-Propanol
  • 1-Butanol
  • 1-Pentanol
  • 1-Hexanol
  • 1-Heptanol
  • 1-Octanol (capryl)
  • 1-Nonanol (pelargonic)
Straight-chainsaturatedC10 — C19
  • 1-Decanol (capric)
  • 1-Undecanol (hendecyl)
  • 1-Dodecanol (lauryl)
  • 1-Tridecanol
  • 1-Tetradecanol (myristyl)
  • 1-Pentadecanol
  • 1-Hexadecanol (cetyl / palmityl)
  • 1-Heptadecanol
  • 1-Octadecanol (stearyl)
  • 1-Nonadecanol
Straight-chainsaturatedC20 — C29
  • 1-Icosanol (arachidyl)
  • 1-Heneicosanol
  • 1-Docosanol (behenyl)
  • 1-Tricosanol
  • 1-Tetracosanol (lignoceryl)
  • 1-Pentacosanol
  • 1-Hexacosanol (ceryl)
  • 1-Heptacosanol
  • 1-Octacosanol (cluytyl / montanyl)
  • 1-Nonacosanol
Straight-chainsaturatedC30 — C39
  • 1-Triacontanol (melissyl / myricyl)
  • 1-Hentriacontanol
  • 1-Dotriacontanol (lacceryl)
  • 1-Tritriacontanol
  • 1-Tetratriacontanol (geddyl)
  • 1-Pentatriacontanol
  • 1-Hexatriacontanol
  • 1-Heptatriacontanol
  • 1-Octatriacontanol
  • 1-Nonatriacontanol
Straight-chainsaturatedC40 — C49
  • 1-Tetracontanol
  • 1-Hentetracontanol
  • 1-Dotetracontanol
  • 1-Tritetracontanol
  • 1-Tetratetracontanol
  • 1-Pentatetracontanol
  • 1-Hexatetracontanol
  • 1-Heptatetracontanol
  • 1-Octatetracontanol
  • 1-Nonatetracontanol
  • 2-Ethylhexanol
  • Allyl alcohol
  • Anisyl alcohol
  • Benzyl alcohol
  • Cinnamyl alcohol
  • Crotyl alcohol
  • Furfuryl alcohol
  • Isoamyl alcohol
  • Neopentyl alcohol
  • Nicotinyl alcohol
  • Perillyl alcohol
  • Phenethyl alcohol
  • Prenol
  • Propargyl alcohol
  • Salicyl alcohol
  • Tryptophol
  • Vanillyl alcohol
  • Veratrole alcohol
Secondary alcohols (2°)
  • 1-Phenylethanol
  • 2-Butanol
  • 2-Deoxyerythritol
  • 2-Heptanol
  • 3-Heptanol
  • 2-Hexanol
  • 3-Hexanol
  • 3-Methyl-2-butanol
  • 2-Nonanol
  • 2-Octanol
  • 2-Pentanol
  • 3-Pentanol
  • Cyclohexanol
  • Cyclopentanol
  • Cyclopropanol
  • Diphenylmethanol
  • Isopropanol
  • Pinacolyl alcohol
  • Pirkle's alcohol
  • Propylene glycol methyl ether
  • Tertiary alcohols (3°)
    • 2-Methyl-2-pentanol
    • 2-Methylheptan-2-ol
    • 2-Methylhexan-2-ol
    • 3-Methyl-3-pentanol
    • 3-Methyloctan-3-ol
    • Diacetone alcohol
    • Ethchlorvynol
    • Methylpentynol
    • Nonafluoro-tert-butyl alcohol
    • tert-Amyl alcohol
    • tert-Butyl alcohol
    • Triphenylethanol
    • Triphenylmethanol
    Hydric alcohols
    Monohydric alcohols
    • Methanol (C1)
    • Ethanol (C2)
    • Isopropanol (C3)
    • 1-Butanol (C4)
    • 1-Pentanol (C5)
    • Cetyl alcohol (C16)
    Dihydric alcohols
    • Ethylene glycol
    • Propylene glycol
    Trihydric alcohols
    • Glycerol
    Polyhydric alcohols (sugar alcohols)
    • Pentaerythritol
    • Ethylene glycol (C2)
    • Glycerol, Propylene glycol (C3)
    • Erythritol, Threitol (C4)
    • Xylitol (C5)
    • Mannitol, Sorbitol (C6)
    • Volemitol (C7)
    Amyl alcohols
    • 2,2-Dimethylpropan-1-ol
    • 2-Methylbutan-1-ol
    • 2-Methylbutan-2-ol
    • 3-Methylbutan-1-ol
    • 3-Methylbutan-2-ol
    • Pentan-1-ol
    • Pentan-2-ol
    • Pentan-3-ol
    Aromatic alcohols
    • Benzyl alcohol
    • 2,4-Dichlorobenzyl alcohol
    • 3-Nitrobenzyl alcohol
    Saturatedfatty alcohols
    • Cetostearyl alcohol
    • Decanol
    • Lauryl alcohol
    • Myristyl alcohol
    • Nonanol
    • Octanol
    • Tridecanol
    • Undecanol
    Branched andunsaturatedfatty alcohols
    • 3-Methyl-3-pentanol
    • Erucyl alcohol
    • Linolenyl alcohol
    • Linoleyl alcohol
    • Oleyl alcohol
    • Palmitoleyl alcohol
    • tert-Amyl alcohol
    • tert-Butyl alcohol
    Sugar alcohols
    C1 — C7
    • Methylene glycol (C1)
    • Ethylene glycol (C2)
    • Glycerol (C3)
    • Erythritol (C4)
    • Threitol (C4)
    • Arabitol (C5)
    • Ribitol (C5)
    • Xylitol (C5)
    • Mannitol (C6)
    • Sorbitol (C6)
    • Galactitol (C6)
    • Iditol (C6)
    • Volemitol (C7)
    Deoxy sugar alcohols
    • Fucitol
    Cyclic sugar alcohols
    • Inositol
    Glycylglycitols
    • Maltitol
    • Lactitol
    • Isomalt
    • Maltotriitol
    • Maltotetraitol
    • Polyglycitol
    Terpene alcohols
    Monoterpene alcohols
    • Borneol
    • Citronellol
    • Geraniol
    • Linalool
    • Menthol
    • Nerol
    • Rhodinol
    • Terpineol
    Sesquiterpene alcohols
    • Bisabolol
    • Farnesol
    • Nerolidol
    • Patchoulol
    Diterpene alcohols
    • Phytol
    Dialcohols
    • 1,4-Butanediol
    • 1,5-Pentanediol
    • 2-Methyl-2-propyl-1,3-propanediol
    • Diethylpropanediol
    • Ethylene glycol
    Trialcohols
    • Glycerol
    Sterols
    • Cholesterol
    • Ergosterol
    • Lanosterol
    • β-Sitosterol
    • Stigmasterol
    Fluoroalcohols
    • 1,3-Difluoro-2-propanol
    • 2,2,2-Trifluoroethanol
    • 2-Fluoroethanol
    • Nonafluoro-tert-butyl alcohol
    • Trifluoromethanol
    Preparations
    • Substitution of haloalkane
    • Carbonyl reduction
    • Ether cleavage
    • Hydrolysis of epoxide
    • Hydration of alkene
    • Ziegler process
    Reactions
    • Deprotonation
    • Protonation
    • Alcohol oxidation
      • Glycol cleavage
    • Nucleophilic substitution
    • Fischer–Speier esterification
    • Williamson ether synthesis
    • Elimination reaction
    • Nucleophilic substitution of carbonyl group
    • Friedel-Crafts alkylation
    • Nucleophilic conjugate addition
    • Transesterification
    • Category
    • v
    • t
    • e
    Topics in organic reactions
    • Addition reaction
    • Elimination reaction
    • Polymerization
    • Reagents
    • Rearrangement reaction
    • Redox reaction
    • Regioselectivity
    • Stereoselectivity
    • Stereospecificity
    • Substitution reaction
    • A value
    • Alpha effect
    • Annulene
    • Anomeric effect
    • Antiaromaticity
    • Aromatic ring current
    • Aromaticity
    • Baird's rule
    • Baker–Nathan effect
    • Baldwin's rules
    • Bema Hapothle
    • Beta-silicon effect
    • Bicycloaromaticity
    • Bredt's rule
    • Bürgi–Dunitz angle
    • Catalytic resonance theory
    • Charge remote fragmentation
    • Charge-transfer complex
    • Clar's rule
    • Conformational isomerism
    • Conjugated system
    • Conrotatory and disrotatory
    • Curtin–Hammett principle
    • Dynamic binding (chemistry)
    • Edwards equation
    • Effective molarity
    • Electromeric effect
    • Electron-rich
    • Electron-withdrawing group
    • Electronic effect
    • Electrophile
    • Evelyn effect
    • Flippin–Lodge angle
    • Free-energy relationship
    • Grunwald–Winstein equation
    • Hammett acidity function
    • Hammett equation
    • George S. Hammond
    • Hammond's postulate
    • Homoaromaticity
    • Hückel's rule
    • Hyperconjugation
    • Inductive effect
    • Kinetic isotope effect
    • LFER solvent coefficients (data page)
    • Marcus theory
    • Markovnikov's rule
    • Möbius aromaticity
    • Möbius–Hückel concept
    • More O'Ferrall–Jencks plot
    • Negative hyperconjugation
    • Neighbouring group participation
    • 2-Norbornyl cation
    • Nucleophile
    • Kennedy J. P. Orton
    • Passive binding
    • Phosphaethynolate
    • Polar effect
    • Polyfluorene
    • Ring strain
    • Σ-aromaticity
    • Spherical aromaticity
    • Spiroaromaticity
    • Steric effects
    • Superaromaticity
    • Swain–Lupton equation
    • Taft equation
    • Thorpe–Ingold effect
    • Vinylogy
    • Walsh diagram
    • Woodward–Hoffmann rules
    • Woodward's rules
    • Y-aromaticity
    • Yukawa–Tsuno equation
    • Zaitsev's rule
    • Σ-bishomoaromaticity
    List of organic reactions
    Carbon-carbon bond forming reactions
    • Acetoacetic ester synthesis
    • Acyloin condensation
    • Aldol condensation
    • Aldol reaction
    • Alkane metathesis
    • Alkyne metathesis
    • Alkyne trimerisation
    • Alkynylation
    • Allan–Robinson reaction
    • Arndt–Eistert reaction
    • Auwers synthesis
    • Aza-Baylis–Hillman reaction
    • Barbier reaction
    • Barton–Kellogg reaction
    • Baylis–Hillman reaction
    • Benary reaction
    • Bergman cyclization
    • Biginelli reaction
    • Bingel reaction
    • Blaise ketone synthesis
    • Blaise reaction
    • Blanc chloromethylation
    • Bodroux–Chichibabin aldehyde synthesis
    • Bouveault aldehyde synthesis
    • Bucherer–Bergs reaction
    • Buchner ring expansion
    • Cadiot–Chodkiewicz coupling
    • Carbonyl allylation
    • Carbonyl olefin metathesis
    • Castro–Stephens coupling
    • Chan rearrangement
    • Chan–Lam coupling
    • Claisen condensation
    • Claisen rearrangement
    • Claisen-Schmidt condensation
    • Combes quinoline synthesis
    • Corey–Fuchs reaction
    • Corey–House synthesis
    • Coupling reaction
    • Cross-coupling reaction
    • Cross dehydrogenative coupling
    • Cross-coupling partner
    • Dakin–West reaction
    • Darzens reaction
    • Diels–Alder reaction
    • Doebner reaction
    • Wulff–Dötz reaction
    • Ene reaction
    • Enyne metathesis
    • Ethenolysis
    • Favorskii reaction
    • Ferrier carbocyclization
    • Friedel–Crafts reaction
    • Fujimoto–Belleau reaction
    • Fujiwara–Moritani reaction
    • Fukuyama coupling
    • Gabriel–Colman rearrangement
    • Gattermann reaction
    • Glaser coupling
    • Grignard reaction
    • Grignard reagent
    • Hammick reaction
    • Heck reaction
    • Henry reaction
    • Heterogeneous metal catalyzed cross-coupling
    • High dilution principle
    • Hiyama coupling
    • Homologation reaction
    • Horner–Wadsworth–Emmons reaction
    • Hydrocyanation
    • Hydrovinylation
    • Hydroxymethylation
    • Ivanov reaction
    • Johnson–Corey–Chaykovsky reaction
    • Julia olefination
    • Julia–Kocienski olefination
    • Kauffmann olefination
    • Knoevenagel condensation
    • Knorr pyrrole synthesis
    • Kolbe–Schmitt reaction
    • Kowalski ester homologation
    • Kulinkovich reaction
    • Kumada coupling
    • Liebeskind–Srogl coupling
    • Malonic ester synthesis
    • Mannich reaction
    • McMurry reaction
    • Meerwein arylation
    • Methylenation
    • Michael reaction
    • Minisci reaction
    • Mizoroki-Heck vs. Reductive Heck
    • Nef isocyanide reaction
    • Nef synthesis
    • Negishi coupling
    • Nierenstein reaction
    • Nitro-Mannich reaction
    • Nozaki–Hiyama–Kishi reaction
    • Olefin conversion technology
    • Olefin metathesis
    • Palladium–NHC complex
    • Passerini reaction
    • Peterson olefination
    • Pfitzinger reaction
    • Piancatelli rearrangement
    • Pinacol coupling reaction
    • Prins reaction
    • Quelet reaction
    • Ramberg–Bäcklund reaction
    • Rauhut–Currier reaction
    • Reformatsky reaction
    • Reimer–Tiemann reaction
    • Rieche formylation
    • Ring-closing metathesis
    • Robinson annulation
    • Sakurai reaction
    • Seyferth–Gilbert homologation
    • Shapiro reaction
    • Sonogashira coupling
    • Stetter reaction
    • Stille reaction
    • Stollé synthesis
    • Stork enamine alkylation
    • Suzuki reaction
    • Takai olefination
    • Thermal rearrangement of aromatic hydrocarbons
    • Thorpe reaction
    • Ugi reaction
    • Ullmann reaction
    • Wagner-Jauregg reaction
    • Weinreb ketone synthesis
    • Wittig reaction
    • Wurtz reaction
    • Wurtz–Fittig reaction
    • Zincke–Suhl reaction
    Homologation reactions
    • Arndt–Eistert reaction
    • Hooker reaction
    • Kiliani–Fischer synthesis
    • Kowalski ester homologation
    • Methoxymethylenetriphenylphosphorane
    • Seyferth–Gilbert homologation
    • Wittig reaction
    Olefination reactions
    • Bamford–Stevens reaction
    • Barton–Kellogg reaction
    • Boord olefin synthesis
    • Chugaev elimination
    • Cope reaction
    • Corey–Winter olefin synthesis
    • Dehydrohalogenation
    • Elimination reaction
    • Grieco elimination
    • Hofmann elimination
    • Horner–Wadsworth–Emmons reaction
    • Hydrazone iodination
    • Julia olefination
    • Julia–Kocienski olefination
    • Kauffmann olefination
    • McMurry reaction
    • Peterson olefination
    • Ramberg–Bäcklund reaction
    • Shapiro reaction
    • Takai olefination
    • Wittig reaction
    Carbon-heteroatom bond forming reactions
    • Azo coupling
    • Bartoli indole synthesis
    • Boudouard reaction
    • Cadogan–Sundberg indole synthesis
    • Diazonium compound
    • Esterification
    • Grignard reagent
    • Haloform reaction
    • Hegedus indole synthesis
    • Hurd–Mori 1,2,3-thiadiazole synthesis
    • Kharasch–Sosnovsky reaction
    • Knorr pyrrole synthesis
    • Leimgruber–Batcho indole synthesis
    • Mukaiyama hydration
    • Nenitzescu indole synthesis
    • Oxymercuration reaction
    • Reed reaction
    • Schotten–Baumann reaction
    • Ullmann condensation
    • Williamson ether synthesis
    • Yamaguchi esterification
    Degradation reactions
    • Barbier–Wieland degradation
    • Bergmann degradation
    • Edman degradation
    • Emde degradation
    • Gallagher–Hollander degradation
    • Hofmann rearrangement
    • Hooker reaction
    • Isosaccharinic acid
    • Marker degradation
    • Ruff degradation
    • Strecker degradation
    • Von Braun amide degradation
    • Weerman degradation
    • Wohl degradation
    Organic redox reactions
    • Acyloin condensation
    • Adkins–Peterson reaction
    • Akabori amino-acid reaction
    • Alcohol oxidation
    • Algar–Flynn–Oyamada reaction
    • Amide reduction
    • Andrussow process
    • Angeli–Rimini reaction
    • Aromatization
    • Autoxidation
    • Baeyer–Villiger oxidation
    • Barton–McCombie deoxygenation
    • Bechamp reduction
    • Benkeser reaction
    • Bergmann degradation
    • Birch reduction
    • Bohn–Schmidt reaction
    • Bosch reaction
    • Bouveault–Blanc reduction
    • Boyland–Sims oxidation
    • Cannizzaro reaction
    • Carbonyl reduction
    • Clemmensen reduction
    • Collins oxidation
    • Corey–Itsuno reduction
    • Corey–Kim oxidation
    • Corey–Winter olefin synthesis
    • Criegee oxidation
    • Dakin oxidation
    • Davis oxidation
    • Deoxygenation
    • Dess–Martin oxidation
    • DNA oxidation
    • Elbs persulfate oxidation
    • Emde degradation
    • Eschweiler–Clarke reaction
    • Étard reaction
    • Fischer–Tropsch process
    • Fleming–Tamao oxidation
    • Fukuyama reduction
    • Ganem oxidation
    • Glycol cleavage
    • Griesbaum coozonolysis
    • Grundmann aldehyde synthesis
    • Haloform reaction
    • Hydrogenation
    • Hydrogenolysis
    • Hydroxylation
    • Jones oxidation
    • Kiliani–Fischer synthesis
    • Kolbe electrolysis
    • Kornblum oxidation
    • Kornblum–DeLaMare rearrangement
    • Leuckart reaction
    • Ley oxidation
    • Lindgren oxidation
    • Lipid peroxidation
    • Lombardo methylenation
    • Luche reduction
    • Markó–Lam deoxygenation
    • McFadyen–Stevens reaction
    • Meerwein–Ponndorf–Verley reduction
    • Methionine sulfoxide
    • Miyaura borylation
    • Mozingo reduction
    • Noyori asymmetric hydrogenation
    • Omega oxidation
    • Oppenauer oxidation
    • Oxygen rebound mechanism
    • Ozonolysis
    • Parikh–Doering oxidation
    • Pinnick oxidation
    • Prévost reaction
    • Reduction of nitro compounds
    • Reductive amination
    • Riley oxidation
    • Rosenmund reduction
    • Rubottom oxidation
    • Sabatier reaction
    • Sarett oxidation
    • Selenoxide elimination
    • Shapiro reaction
    • Sharpless asymmetric dihydroxylation
    • Epoxidation of allylic alcohols
    • Sharpless epoxidation
    • Sharpless oxyamination
    • Stahl oxidation
    • Staudinger reaction
    • Stephen aldehyde synthesis
    • Swern oxidation
    • Transfer hydrogenation
    • Wacker process
    • Wharton reaction
    • Whiting reaction
    • Wohl–Aue reaction
    • Wolff–Kishner reduction
    • Wolffenstein–Böters reaction
    • Zinin reaction
    Rearrangement reactions
    • 1,2-rearrangement
    • 1,2-Wittig rearrangement
    • 2,3-sigmatropic rearrangement
    • 2,3-Wittig rearrangement
    • Achmatowicz reaction
    • Alkyne zipper reaction
    • Allen–Millar–Trippett rearrangement
    • Allylic rearrangement
    • Alpha-ketol rearrangement
    • Amadori rearrangement
    • Arndt–Eistert reaction
    • Aza-Cope rearrangement
    • Baker–Venkataraman rearrangement
    • Bamberger rearrangement
    • Banert cascade
    • Beckmann rearrangement
    • Benzilic acid rearrangement
    • Bergman cyclization
    • Bergmann degradation
    • Boekelheide reaction
    • Brook rearrangement
    • Buchner ring expansion
    • Carroll rearrangement
    • Chan rearrangement
    • Claisen rearrangement
    • Cope rearrangement
    • Corey–Fuchs reaction
    • Cornforth rearrangement
    • Criegee rearrangement
    • Curtius rearrangement
    • Demjanov rearrangement
    • Di-π-methane rearrangement
    • Dimroth rearrangement
    • Divinylcyclopropane-cycloheptadiene rearrangement
    • Dowd–Beckwith ring-expansion reaction
    • Electrocyclic reaction
    • Ene reaction
    • Enyne metathesis
    • Favorskii reaction
    • Favorskii rearrangement
    • Ferrier carbocyclization
    • Ferrier rearrangement
    • Fischer–Hepp rearrangement
    • Fries rearrangement
    • Fritsch–Buttenberg–Wiechell rearrangement
    • Gabriel–Colman rearrangement
    • Group transfer reaction
    • Halogen dance rearrangement
    • Hayashi rearrangement
    • Hofmann rearrangement
    • Hofmann–Martius rearrangement
    • Ireland–Claisen rearrangement
    • Jacobsen rearrangement
    • Kornblum–DeLaMare rearrangement
    • Kowalski ester homologation
    • Lobry de Bruyn–Van Ekenstein transformation
    • Lossen rearrangement
    • McFadyen–Stevens reaction
    • McLafferty rearrangement
    • Meyer–Schuster rearrangement
    • Mislow–Evans rearrangement
    • Mumm rearrangement
    • Myers allene synthesis
    • Nazarov cyclization reaction
    • Neber rearrangement
    • Newman–Kwart rearrangement
    • Overman rearrangement
    • Oxy-Cope rearrangement
    • Pericyclic reaction
    • Piancatelli rearrangement
    • Pinacol rearrangement
    • Pummerer rearrangement
    • Ramberg–Bäcklund reaction
    • Ring expansion and contraction
    • Ring-closing metathesis
    • Rupe reaction
    • Schmidt reaction
    • Semipinacol rearrangement
    • Seyferth–Gilbert homologation
    • Sigmatropic reaction
    • Skattebøl rearrangement
    • Smiles rearrangement
    • Sommelet–Hauser rearrangement
    • Stevens rearrangement
    • Stieglitz rearrangement
    • Thermal rearrangement of aromatic hydrocarbons
    • Tiffeneau–Demjanov rearrangement
    • Vinylcyclopropane rearrangement
    • Wagner–Meerwein rearrangement
    • Wallach rearrangement
    • Weerman degradation
    • Westphalen–Lettré rearrangement
    • Willgerodt rearrangement
    • Wolff rearrangement
    Ring forming reactions
    • 1,3-Dipolar cycloaddition
    • Annulation
    • Azide-alkyne Huisgen cycloaddition
    • Baeyer–Emmerling indole synthesis
    • Bartoli indole synthesis
    • Bergman cyclization
    • Biginelli reaction
    • Bischler–Möhlau indole synthesis
    • Bischler–Napieralski reaction
    • Blum–Ittah aziridine synthesis
    • Bobbitt reaction
    • Bohlmann–Rahtz pyridine synthesis
    • Borsche–Drechsel cyclization
    • Bucherer carbazole synthesis
    • Bucherer–Bergs reaction
    • Cadogan–Sundberg indole synthesis
    • Camps quinoline synthesis
    • Chichibabin pyridine synthesis
    • Cook–Heilbron thiazole synthesis
    • Cycloaddition
    • Darzens reaction
    • Davis–Beirut reaction
    • De Kimpe aziridine synthesis
    • Debus–Radziszewski imidazole synthesis
    • Dieckmann condensation
    • Diels–Alder reaction
    • Feist–Benary synthesis
    • Ferrario–Ackermann reaction
    • Fiesselmann thiophene synthesis
    • Fischer indole synthesis
    • Fischer oxazole synthesis
    • Friedländer synthesis
    • Gewald reaction
    • Graham reaction
    • Hantzsch pyridine synthesis
    • Hegedus indole synthesis
    • Hemetsberger indole synthesis
    • Hofmann–Löffler reaction
    • Hurd–Mori 1,2,3-thiadiazole synthesis
    • Iodolactonization
    • Isay reaction
    • Jacobsen epoxidation
    • Johnson–Corey–Chaykovsky reaction
    • Knorr pyrrole synthesis
    • Knorr quinoline synthesis
    • Kröhnke pyridine synthesis
    • Kulinkovich reaction
    • Larock indole synthesis
    • Madelung synthesis
    • Nazarov cyclization reaction
    • Nenitzescu indole synthesis
    • Niementowski quinazoline synthesis
    • Niementowski quinoline synthesis
    • Paal–Knorr synthesis
    • Paternò–Büchi reaction
    • Pechmann condensation
    • Petrenko-Kritschenko piperidone synthesis
    • Pictet–Spengler reaction
    • Pomeranz–Fritsch reaction
    • Prilezhaev reaction
    • Pschorr cyclization
    • Reissert indole synthesis
    • Ring-closing metathesis
    • Robinson annulation
    • Sharpless epoxidation
    • Simmons–Smith reaction
    • Skraup reaction
    • Urech hydantoin synthesis
    • Van Leusen reaction
    • Wenker synthesis
    Cycloaddition
    • 1,3-Dipolar cycloaddition
    • 4+4 Photocycloaddition
    • (4+3) cycloaddition
    • 6+4 Cycloaddition
    • Alkyne trimerisation
    • Aza-Diels–Alder reaction
    • Azide-alkyne Huisgen cycloaddition
    • Bradsher cycloaddition
    • Cheletropic reaction
    • Conia-ene reaction
    • Cyclopropanation
    • Diazoalkane 1,3-dipolar cycloaddition
    • Diels–Alder reaction
    • Enone–alkene cycloadditions
    • Hexadehydro Diels–Alder reaction
    • Intramolecular Diels–Alder cycloaddition
    • Inverse electron-demand Diels–Alder reaction
    • Ketene cycloaddition
    • McCormack reaction
    • Metal-centered cycloaddition reactions
    • Nitrone-olefin (3+2) cycloaddition
    • Oxo-Diels–Alder reaction
    • Ozonolysis
    • Pauson–Khand reaction
    • Povarov reaction
    • Prato reaction
    • Retro-Diels–Alder reaction
    • Staudinger synthesis
    • Trimethylenemethane cycloaddition
    • Vinylcyclopropane (5+2) cycloaddition
    • Wagner-Jauregg reaction
    Heterocycle forming reactions
    • Algar–Flynn–Oyamada reaction
    • Allan–Robinson reaction
    • Auwers synthesis
    • Bamberger triazine synthesis
    • Banert cascade
    • Barton–Zard reaction
    • Bernthsen acridine synthesis
    • Bischler–Napieralski reaction
    • Bobbitt reaction
    • Boger pyridine synthesis
    • Borsche–Drechsel cyclization
    • Bucherer carbazole synthesis
    • Bucherer–Bergs reaction
    • Chichibabin pyridine synthesis
    • Cook–Heilbron thiazole synthesis
    • Diazoalkane 1,3-dipolar cycloaddition
    • Einhorn–Brunner reaction
    • Erlenmeyer–Plöchl azlactone and amino-acid synthesis
    • Feist–Benary synthesis
    • Fischer oxazole synthesis
    • Gabriel–Colman rearrangement
    • Gewald reaction
    • Hantzsch ester
    • Hantzsch pyridine synthesis
    • Herz reaction
    • Knorr pyrrole synthesis
    • Kröhnke pyridine synthesis
    • Lectka enantioselective beta-lactam synthesis
    • Lehmstedt–Tanasescu reaction
    • Niementowski quinazoline synthesis
    • Nitrone-olefin (3+2) cycloaddition
    • Paal–Knorr synthesis
    • Pellizzari reaction
    • Pictet–Spengler reaction
    • Pomeranz–Fritsch reaction
    • Prilezhaev reaction
    • Robinson–Gabriel synthesis
    • Stollé synthesis
    • Urech hydantoin synthesis
    • Wenker synthesis
    • Wohl–Aue reaction

    Tag » How To Make Ketones From Alcohol