Trigonometry Angles--Pi/2 -- From Wolfram MathWorld

Search Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld
  • Geometry
  • Trigonometry
  • Trigonometric Identities
Trigonometry Angles--Pi/2 DOWNLOAD Mathematica NotebookDownload Wolfram Notebook TrigonometryAnglesPi2

By the definition of the functions of trigonometry, the sine of pi/2 is equal to the y-coordinate of the point with polar coordinates (r,theta)=(1,pi/2), giving sin(pi/2)=1. Similarly, cos(pi/2)=0, since it is the x-coordinate of this point. Filling out the other trigonometric functions then gives

cos(pi/2)=0 (1)
cot(pi/2)=0 (2)
csc(pi/2)=1 (3)
sec(pi/2)=infty (4)
sin(pi/2)=1 (5)
tan(pi/2)=infty. (6)

See also

Digon, Trigonometry Angles, Trigonometry, Tusi Couple

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

  • 1, 2, 3, 2, 1, 2, 3, 2, 1, ...
  • gcd(36,10) * lcm(36,10)
  • int (x^2 y^2 + x y^3) dx dy, x=-2 to 2, y=-2 to 2

Cite this as:

Weisstein, Eric W. "Trigonometry Angles--Pi/2." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/TrigonometryAnglesPi2.html

Subject classifications

  • Geometry
  • Trigonometry
  • Trigonometric Identities
Created, developed and nurtured by Eric Weisstein at Wolfram Research

Tag » Where Is Negative Pi On The Unit Circle