Vertical Tangent: Definition, How To Find - Calculus How To
Maybe your like
You may want to read this article first: What is a Tangent Line?
Watch the video or read on below: Vertical Tangent Definition and ExampleWatch this video on YouTube. Can’t see the video? Click here.
A tangent of a curve is a line that touches the curve at one point. It has the same slope as the curve at that point. A vertical tangent touches the curve at a point where the gradient (slope) of the curve is infinite and undefined. On a graph, it runs parallel to the y-axis.
How to Find the Vertical Tangent
General Steps to find the vertical tangent in calculus and the gradient of a curve:
- Find the derivative of the function. The derivative (dy/dx) will give you the gradient (slope) of the curve.
- Find a value of x that makes dy/dx infinite; you’re looking for an infinite slope, so the vertical tangent of the curve is a vertical line at this value of x.
Vertical Tangent in Calculus Example
Example Problem: Find the vertical tangent of the curve y = √(x – 2).
Step 1: Differentiate y = √(x – 2). You can use your graphing calculator, or perform the differentiation by hand (using the power rule and the chain rule). I differentiated the function with this online calculator (which also shows you the steps!): 
Step 2: Look for values of x that would make dy/dx infinite. This is really where strong algebra skills come in handy, although for this example problem all you need to recognize what happens if you put a “2” into the derivative equation:
Division by zero is undefined. This means that the gradient of the curve is infinite (i.e., vertical) when x = 2.
The vertical tangent of the curve is x = 2. That’s it!
Graphing & Tables
If you aren’t able to immediately see where your function might return zero, you’ve got two options: 
Graphing can sometimes help you see where a vertical tangent line might be.
- Graph the function—so you can see where the graph might have a vertical tangent. I used this handy HRW calculator to get the above graph of y = √(x – 2). It’s gairly clear that there’s a vertical tangent at x = 2, though you may want to go through the calculus/algebra anyway to prove it.
- Make a table of values and test for several values of x.
The second option can be very time consuming; Strong algebra skills (like knowing when an equation might result in division by zero) will help you to avoid having to make a table.
Tips:
- Some curves will have more than one vertical tangent. Always make sure you have found all the values of x that make the gradient infinite. You can use graph-plotting software to check by eye for places where the gradient becomes vertical.
- For more tips on where functions might return zero, see the “Guess & Check” section of the Domain and Range article.
Need help with a homework or test question? With Chegg Study, you can get step-by-step solutions to your questions from an expert in the field. Your first 30 minutes with a Chegg tutor is free!
CalculusHowTo.com
Tag » How To Find Vertical Tangent Line
-
Module 13 - Implicit Differentiation - Lesson 2
-
Finding Points With Vertical Tangents - YouTube
-
Horizontal Tangent Lines And Vertical Tangent Lines Of Parametric ...
-
[PDF] Find Vertical Tangent Lines
-
How To Find The Vertical Tangent - Sciencing
-
How To Find The Vertical Tangent Line - Quora
-
Find Vertical Tangent | Free Math Help Forum
-
Vertical Tangent - Wikipedia
-
[PDF] Tangents Of Parametric Curves
-
How To Find The Coordinates Of Each Point On The Curve ... - Socratic
-
How Do You Find Horizontal And Vertical Tangent Lines After ... - Socratic
-
To Find The Vertical Tangent Line Of A Curve, Why Must The Numerator Of ...
-
Calculus II - Tangents With Parametric Equations
-
Tangent Line - Equation, Slope, Horizontal | Point Of Tangency