1. Given: C= 2,4,6,8,10 D=4,8,12,16,20 A. Find AUB - Gauthmath

Step 1: Identify the corresponding sides. Since $$AB = 5.6$$ and $$OQ = 5.6$$, $$AB$$ corresponds to $$OQ$$. Since $$\angle BAC = 62^\circ$$ and $$\angle OQP = 41^\circ$$, $$\angle BAC$$ does not correspond to $$\angle OQP$$. Since the two triangles are congruent, $$AC$$ corresponds to $$QP$$ and $$BC$$ corresponds to $$OP$$.

Step 2: Find $$p$$. Since $$AC$$ corresponds to $$QP$$, $$p = 5.1$$.

Step 3: Find the angle corresponding to $$\angle BCA$$. Since $$AB$$ corresponds to $$OQ$$ and $$AC$$ corresponds to $$QP$$, $$\angle BCA$$ corresponds to $$\angle QPO$$.

Step 4: Find $$\angle QOP$$. In $$\triangle OPQ$$, $$\angle OQP + \angle QPO + \angle POQ = 180^\circ$$, so $$41^\circ + \angle QPO + \angle POQ = 180^\circ$$. Since $$BC$$ corresponds to $$OP$$ and $$AB$$ corresponds to $$OQ$$, $$\angle ACB$$ corresponds to $$\angle QPO$$. Since $$AC$$ corresponds to $$QP$$ and $$AB$$ corresponds to $$OQ$$, $$\angle ABC$$ corresponds to $$\angle POQ$$. Since $$\angle BAC = 62^\circ$$, $$\angle QPO$$ corresponds to $$\angle BCA$$, and $$\angle POQ$$ corresponds to $$\angle ABC$$, then $$\angle POQ = 62^\circ$$. $$41^\circ + \angle QPO + 62^\circ = 180^\circ$$, so $$\angle QPO = 180^\circ - 41^\circ - 62^\circ = 77^\circ$$.

Step 5: Find $$q$$. Since $$\angle QPO = \angle BCA$$, $$q = 77^\circ$$.

Từ khóa » C= 2 4 6 8