15 Và F'( X )=x^3[ F( X ) ]^2 Với Mọi Xin R. Giá Trị Của F( 1 )

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT  Cho hàm số f( x ) thỏa mãn f( 2 )=-15 và f'( x )=x^3[ f( x ) ]^2 với mọi xin R. Giá trị của f( 1 )  Cho hàm số f( x ) thỏa mãn f( 2 )=-15 và f'( x )=x^3[ f( x ) ]^2 với mọi xin R. Giá trị của f( 1 )

Câu hỏi

Nhận biết

Cho hàm số \(f\left( x \right)\) thỏa mãn \(f\left( 2 \right)=-\frac{1}{5}\) và \(f'\left( x \right)={{x}^{3}}{{\left[ f\left( x \right) \right]}^{2}}\) với mọi \(x\in R.\) Giá trị của \(f\left( 1 \right)\) bằng:

A. \(-\frac{4}{35}\)                                B.   \(-\frac{71}{20}\)                              C.   \(-\frac{79}{20}\)                                    D.   \(-\frac{4}{5}\)

Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Ta có: \(f'\left( x \right)={{x}^{3}}{{\left[ f\left( x \right) \right]}^{2}}\Leftrightarrow \frac{f'\left( x \right)}{{{f}^{2}}\left( x \right)}{{x}^{3}}\)

\(\Rightarrow \int{\frac{f'\left( x \right)}{{{f}^{2}}\left( x \right)}dx=\int{{{x}^{3}}dx}\Leftrightarrow -\frac{1}{f\left( x \right)}=\frac{{{x}^{4}}}{4}+C.}\)

Theo đề bài ta có: \(f\left( 2 \right)=-\frac{1}{5}\Rightarrow -\frac{1}{-\frac{1}{5}}=\frac{{{2}^{4}}}{4}+C\Leftrightarrow C=1.\)

\(\Rightarrow -\frac{1}{f\left( x \right)}=\frac{{{x}^{4}}}{4}+1\Rightarrow -\frac{1}{f\left( 1 \right)}=\frac{1}{4}+1\Leftrightarrow f\left( x \right)=-\frac{4}{5}.\)

Chọn D.

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Cho 3f(x)+xf'(x)=x^2018