Appendix: Hyperbolic Trigonometric Functions
| Definitions (a) cosh(x) = (ex+e-x)/2, (b) sinh(x) = (ex-e-x)/2, (c) tanh(x) = sinh(x)/cosh(x) (= (ex-e-x)/(ex+e-x)). From the definitions, we can easily deduce
|
|
| (1) cosh2(x) - sinh2(x) = 1, (2) sinh(2x) = 2cosh(x)sinh(x), (3) cosh(2x) = cosh2(x) + sinh2(x). From (1) and (3), (3') cosh(2x) = 2cosh2(x) - 1. Using (1) and (2),(3), we get (4) sinh(2x) = 2tanh(x)/(1-tanh2(x)), (5) cosh(2x) = (1+tanh2(x))/(1-tanh2(x)), (6) tanh(2x) = 2tanh(x)/(1+tanh2(x)). Again from the definition, after some calculation, (7) tanh(x+y) = (tanh(x)+tanh(y))/(1+tanh(x)tanh(y)).
| |
| Note that, by (c), tanh(x) = (1-e-2x)/(1+e-2x) = 1 - 2/(e2x+1), so that tanh(0) = 0. Also, for x > 0, e2x > 1, and increases with x, so that tanh(x) increases on [0,∞), and tanh(x) tends to 1 as x tends to ∞. Thus tanh(x) is increasing, and maps [0,∞) to [0,1). It follows that the inverse function arctanh(x) is an increasing function, mapping [0,1) to [0,∞).
| |
| return to main hypeerbolic menu |
Từ khóa » Sinh X = (ex - E-x)/2
-
[PDF] Hyperbolic Functions - Mathcentre
-
How Can We Prove That [math]\sinh X= \frac{e^x-e - Quora
-
Hyperbolic Trigonomic Identities
-
4.11 Hyperbolic Functions
-
Prove A Property Of Hyperbolic Functions: (sinh(x))^2=(-1+cosh(2x))/2
-
[PDF] Formulae Cosh X = Ex + Ex 2 , Sinh X = Ex
-
Solved The Functions, Sinh(x) = Ex - E-x / 2, Cosh(x) = Ex
-
[PDF] 2 HYPERBOLIC FUNCTIONS
-
Hyperbolic Functions - LTCC Online
-
Hyperbolic Functions - Math Is Fun
-
Hyperbolic Sine - MATLAB Sinh - MathWorks
-
Limit Of $\frac{e^x}{\sinh{x}}$ With $x \to \infty - Math Stack Exchange
-
[PDF] Section 8.7, Exercise 9. Find The Maclaurin Series For F(x) = Sinh X ...