Hyperbolic Trigonomic Identities
Math2.org Math Tables: Hyperbolic Trigonometric Identities |
| (Math) |
Hyperbolic Definitions
sinh(x) = ( ex - e-x )/2csch(x) = 1/sinh(x) = 2/( ex - e-x )
cosh(x) = ( e x + e -x )/2
sech(x) = 1/cosh(x) = 2/( ex + e-x )
tanh(x) = sinh(x)/cosh(x) = ( ex - e-x )/( ex + e-x )
coth(x) = 1/tanh(x) = ( ex + e-x)/( ex - e-x )
cosh2(x) - sinh2(x) = 1
tanh2(x) + sech2(x) = 1
coth2(x) - csch2(x) = 1
Inverse Hyperbolic Defintions
arcsinh(z) = ln( z +
(z2 + 1) )
arccosh(z) = ln( z
(z2 - 1) )
arctanh(z) = 1/2 ln( (1+z)/(1-z) )
arccsch(z) = ln( (1+
(1+z2) )/z )
arcsech(z) = ln( (1
(1-z2) )/z )
arccoth(z) = 1/2 ln( (z+1)/(z-1) )
Relations to Trigonometric Functions
sinh(z) = -i sin(iz)
csch(z) = i csc(iz)
cosh(z) = cos(iz)
sech(z) = sec(iz)
tanh(z) = -i tan(iz)
coth(z) = i cot(iz)
Từ khóa » Sinh X = (ex - E-x)/2
-
[PDF] Hyperbolic Functions - Mathcentre
-
How Can We Prove That [math]\sinh X= \frac{e^x-e - Quora
-
4.11 Hyperbolic Functions
-
Prove A Property Of Hyperbolic Functions: (sinh(x))^2=(-1+cosh(2x))/2
-
[PDF] Formulae Cosh X = Ex + Ex 2 , Sinh X = Ex
-
Solved The Functions, Sinh(x) = Ex - E-x / 2, Cosh(x) = Ex
-
[PDF] 2 HYPERBOLIC FUNCTIONS
-
Hyperbolic Functions - LTCC Online
-
Hyperbolic Functions - Math Is Fun
-
Hyperbolic Sine - MATLAB Sinh - MathWorks
-
Limit Of $\frac{e^x}{\sinh{x}}$ With $x \to \infty - Math Stack Exchange
-
Appendix: Hyperbolic Trigonometric Functions
-
[PDF] Section 8.7, Exercise 9. Find The Maclaurin Series For F(x) = Sinh X ...