Bài 1: Hệ Phương Trình Tuyến Tính - HOC247

YOMEDIA NONE Trang chủ Đại số tuyến tính Chương 4: Hệ phương trình tuyến tính Bài 1: Hệ phương trình tuyến tính ADMICRO Lý thuyết 4 FAQ

Mời các bạn cùng tham khảo nội dung bài giảng Bài 1: Hệ phương trình tuyến tính sau đây để tìm hiểu về dạng biểu diễn ma trận, giải hệ phương trình tuyến tính bằng phương pháp Gauss, định lý Cronecker - Capelli, hệ phương trình tuyến tính thuần nhất,...

ATNETWORK

1. Dạng biểu diễn ma trận

2. Giải hệ phương trình tuyến tính bằng phương pháp Gauss

3. Định lý Cronecker - Capelli

4. Hệ Cramer

5. Hệ phương trình tuyến tính thuần nhất

Tóm tắt lý thuyết

1. Dạng biểu diễn ma trận.

Ví dụ: Xét hệ 3 phương trình tuyến tính 4 ẩn số sau đây:

\(\left\{ \begin{array}{l} 2{x_1} - {x_2} + {x_3} - 3{x_4} = 1\\ {x_1} - 4{x_3} + 5{x_4} = - 2\\ - 2{x_2} + {x_4} = 0 \end{array} \right.\)

Đặt \(A = \left( {\begin{array}{*{20}{c}} 2&{ - 1}&1&{ - 3}\\ 1&0&{ - 4}&5\\ 0&{ - 2}&0&1 \end{array}} \right),\,X = ({x_1};{x_2};{x_3};{x_4}) = \left( \begin{array}{l} {x_1}\\ {x_2}\\ {x_3}\\ {x_4} \end{array} \right)\,\,và\,B = \left( \begin{array}{l} 1\\ - 2\\ 0 \end{array} \right)\)

Khi đó, hệ phương trình trên có thể viết lại dưới dạng ma trận là: AX = B.

Trong trường hợp tổng quát, ta xét hệ m phương trình tuyến tính n ẩn như sau:

\(\left\{ \begin{array}{l} {a_{11}}{x_1} + {a_{12}}{x_2} + .... + {a_{1n}}{x_n} = {b_1}\\ {a_{21}}{x_1} + {a_{22}}{x_2} + .... + {a_{2n}}{x_n} = {b_2}\\ ................................\\ {a_{m1}}{x_1} + {a_{m2}}{x_2} + .... + {a_{mn}}{x_n} = {b_m} \end{array} \right.\)

Đặt \(A = {({a_{{\rm{ij}}}})_{m\,x\,n}},\,X = \left( \begin{array}{l} {x_1}\\ .\\ .\\ .\\ {x_n} \end{array} \right),\,B = \left( \begin{array}{l} {b_1}\\ .\\ .\\ .\\ {b_n} \end{array} \right)\). Khi đó, hệ phương trình trên có thể viết lại dưới dạng ma trận là AX = B.

  • Ma trận \(A_{m x n}\) gọi là ma trận hệ sổ của hệ phương trình.
  • Ma trận \(\overline A = (A|B)\) gọi là ma trận hệ số mở rộng của hệ phương trình.
  • X gọi là vectơ ẩn.

2. Giải hệ phương trình tuyến tính bằng phương pháp Gauss.

Một phương pháp thông dụng để giải hệ phương trình tuyến tính là phương pháp Gauss, đưa ma trận hệ số mở rộng \(\overline A \) về dạng bậc thang hay bậc thang thu gọn, nhờ các phép biến đổi sơ cấp trên dòng.

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} - 2{x_2} - {x_3} = - 6\\ 2{x_1} - {x_2} + {x_3} = 3\\ {x_1} + {x_3} = 4 \end{array} \right.\,\,\,(I)\)

Giải:

Ma trận hệ số mở rộng của (I) là :

Ta có hệ phương trình (I) tương đương:

\(\left\{ \begin{array}{l} {x_1} + {x_3} = 4\\ {x_2} + {x_3} = 5 \end{array} \right.\,\,\,hay\,\,\left\{ \begin{array}{l} {x_1} = 4 - {x_3}\\ {x_2} = 5 - {x_3} \end{array} \right.\)

Cho \({x_3} = \alpha \in R\), nghiệm của hệ là \({x_1} = 4 - \alpha ,{x_2} = 5 - \alpha ,{x_3} = \alpha \)

Như thế, hệ phương trình có vô số nghiệm với nghiệm tổng quát là:

\(X = (4 - \alpha ;5 - \alpha ;\alpha );\alpha \in R\)

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} - {x_2} = - 1\\ 2{x_1} + {x_2} - {x_3} = 1\\ {x_2} + {x_3} = 5 \end{array} \right.\,\,\,(I)\)

Giải

Ma trận hệ số mở rộng của (I) là:

Ta có hệ phương trình tương đương \(\left\{ \begin{array}{l} {x_1} = 1\\ {x_2} = 2\\ {x_3} = 3 \end{array} \right.\)

Vậy hệ có nghiệm duy nhất X = (1;2;3)

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} + {x_2} - 2{x_3} = 1\\ 2{x_1} + {x_3} = 0\\ 4{x_1} + 2{x_2} - 3{x_3} = 3 \end{array} \right.\,\,(I)\)

Giải: Ma trận hệ số mở rộng của (I) là

Ta có hệ phương trình tương đương: \(\left\{ \begin{array}{l} {x_1} + {x_2} - 2{x_3} = 1\\ - 2{x_2} + 5{x_3} = - 2\\ 0 = 1 \end{array} \right.\)

Vậy hệ phương trình vô nghiệm

3. Định lý Cronecker - Capelli

Xét hệ phương trình tuyến tính: AX = B với \({A_{m\,x\,n}},\,{X_{n\,\,x\,1}},\,{B_{m\,x\,1}}\)

Ta có:

  • Hệ có nghiệm duy nhất \(\Leftrightarrow R(A) = R(\overline A ) = n\)
  • Hệ có vô số nghiệm \(\Leftrightarrow R(A) = R(\overline A ) = k < n\)
    • Khi đó, hệ phương trình có k ẩn chính ứng với k phần tử dẫn đầu và n - k ẩn tự do, được chuyển sang vế phải.
  • Hệ vô nghiệm \( \Leftrightarrow R(A) < R(\overline A )\)

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} + {x_2} - {x_3} = 2\\ 2{x_1} + {x_3} = 1\\ {x_2} + 2{x_3} = - 2 \end{array} \right.\,(I)\)

Ma trận hệ số mở rộng của (I) là

Ta có: \(R(A) = R(\overline {A)} = 3\) số ẩn

Vậy hệ có nghiệm duy nhất: X = (1;0;-1)

Ví dụ: Giải hệ phuơng trình tuyến tính

\(\left\{ \begin{array}{l} {x_2} - 2{x_3} = 1\\ {x_1} + {x_3} = - 2\\ 2{x_1} + 2{x_2} - 2{x_3} = - 1 \end{array} \right.(I)\)

Giải: Ma trận hệ số mở rộng của (I) là

Ta có: \(R(A) = 2 < R(\overline {A)} = 3\). Vậy hệ vô nghiệm.

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} - {x_2} + {x_3} = 3\\ 2{x_1} + {x_3} = 2\\ 3{x_1} - {x_2} + 2{x_3} = 5 \end{array} \right.\,(I)\)

Giải: Ma trận hệ số mở rộng của (I) là

Ta có: \(R\left( A \right){\rm{ }} = {\rm{ }}R\left( {\overline A } \right){\rm{ }} = {\rm{ }}2\) (số ẩn là 3). Vậy hệ có vô số nghiệm với 2 ẩn chính ứng với 2 phần tử dẫn đầu là x1, x2. Giải x1, x2 theo ẩn tự do x3 ta có hệ phương trình có vô số nghiệm với nghiệm tổng quát là: \(X = \left( {1 - \frac{\alpha }{2}; - 2 + \frac{\alpha }{2};\alpha } \right)\,với\,\alpha \in R\)

4. Hệ Cramer

Hệ phương trình tuyến tính AX = B được gọi là hệ Cramer nếu A là ma trận vuông không suy biến , nghĩa là \(\left| A \right| \ne 0\)

Khi đó, ta có nghiệm duy nhất: \(X = A^{-1}B\)

Nếu cấp của ma trận A khá lớn thì việc tìm \(A^{-1}\) tương đổi phức tạp. Hơn nữa, có khi ta chi cần tìm một vài ẩn \(x_j\) thay vì toàn bộ các ẩ\(X=(x_1; x_2;....;x_n)\). Từ đó, người ta tìm ra công thúc tính từng ẩn \(x_j\) dựa vào công thức \(X = A^{-1}B\) như sau :

\({x_j} = \frac{{{D_j}}}{D}\)

Trong đó \(D = \left| A \right|\,và\,{D_j}\) là định thức của ma trận có được từ A bằng cách thay cột j bởi vế phải (cột B ).

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} - 2{x_2} - {x_3} = - 3\\ - 3{x_1} + {x_2} = - 2\\ - 2{x_1} + {x_3} = 1 \end{array} \right.\)

Giải:

Ta có:

\(\begin{array}{l} D = \left| {\begin{array}{*{20}{c}} 1&{ - 2}&{ - 1}\\ { - 3}&1&0\\ { - 2}&0&1 \end{array}} \right| = - 7;\,\,\,\,{D_1} = \left| {\begin{array}{*{20}{c}} { - 3}&{ - 2}&{ - 1}\\ { - 2}&1&0\\ 1&0&1 \end{array}} \right| = - 6\\ {D_2} = \left| {\begin{array}{*{20}{c}} 1&{ - 3}&{ - 1}\\ { - 3}&{ - 2}&0\\ { - 2}&1&1 \end{array}} \right| = - 4;\,\,\,{D_3} = \left| {\begin{array}{*{20}{c}} 1&{ - 2}&{ - 3}\\ { - 3}&1&{ - 2}\\ { - 2}&0&1 \end{array}} \right| = - 19 \end{array}\)

Vậy nghiệm là \(X = \left( {\frac{{{D_1}}}{D};\frac{{{D_2}}}{D};\frac{{{D_3}}}{D}} \right) = \left( {\frac{6}{7};\frac{4}{7};\frac{{19}}{7}} \right)\)

5. Hệ phương trình tuyến tính thuần nhất.

Hệ phương trình tuyến tính AX = 0 gọi là hệ thuần nhất. Ngoài các tính chất chung của hệ AX = B, hệ thuần nhất AX = 0 còn có các tính chất riêng như sau :

  • Hệ luôn luôn có nghiệm tầm thường X = 0 (không có trường hợp hệ vô nghiệm)
  • Nếu A là ma trận vuông, không suy biến thì hệ có nghiệm duy nhất \(X = A^{-1}0 = 0\), chính là nghiệm tầm thường.
  • Nếu hệ có vô số nghiệm thì tập nghiệm là một không gian con của không gian \(R^n\) (với n là số ẩn). Một cơ sở của không gian nghiệm được gọi là một hệ nghiệm cơ bản.

Ví dụ: Giải hệ phương trình tuyến tính \(\left\{ \begin{array}{l} {x_1} - {x_2} + {x_3} = 0\\ 2{x_1} - {x_2} = 0\\ {x_2} + 2{x_3} = 0 \end{array} \right.\)

Giải:

Ta có: \(D = \left| {\begin{array}{*{20}{c}} 1&{ - 1}&1\\ 2&{ - 1}&0\\ 0&1&2 \end{array}} \right| = 4 \ne 0\)

Đây là hệ Cramer, nên hệ có nghiệm duy nhất X = (0; 0; 0)

Ví dụ: Giải hệ phương trình tuyến tính \(\left\{ \begin{array}{l} {x_1} + 2{x_2} + 5{x_3} = 0\\ - 2{x_1} + {x_2} = 0\\ - {x_1} + 3{x_2} + 5{x_3} = 0 \end{array} \right.\)

Giải:

Ta có:

Hệ có vô số nghiệm với nghiệm tổng quát là: \(X = ( - \alpha ; - 2\alpha ;\alpha ) = \alpha ( - 1; - 2;1),\alpha \in R\)

Một hệ nghiệm cơ bản là {(-1;-2;1)}. Số chiều của không gian nghiệm là 1.

Ví dụ: Giải hệ phương trình tuyến tính

\(\left\{ \begin{array}{l} {x_1} - {x_2} - {x_4} = 0\\ {x_2} - {x_3} - {x_4} = 0\\ 2{x_1} - {x_2} - {x_3} - 3{x_4} = 0 \end{array} \right.\)

Giải:

Ta có:

Nghiệm tổng quát là:

\(X = (\alpha + 2\beta ;\alpha + \beta ;\alpha ;\beta ) = \alpha (1;1;1;0) + \beta (2;1;0;1)\,với\,\,\alpha ,\beta \in R\)

Một hệ nghiệm cơ bản là {(1;1;1;0).(2;1;0;1)}. Số chiều của không gian nghiệm là 2.

QUẢNG CÁO NONE

Bài học cùng chương

Bài 2: Mô hình cân bằng thị trường Bài 2: Mô hình cân bằng thị trường Bài 3: Mô hình Input-Output Leontief Mở Bài 3: Mô hình Input-Output Leontief Mở Bài 4: Mô hình trao đổi Leontief Bài 4: Mô hình trao đổi Leontief ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH ĐẠI HỌC

Môn học

Triết học

Lịch Sử Đảng

Tư Tưởng Hồ Chí Minh

Kinh Tế Vi Mô

Kinh Tế Vĩ Mô

Toán Cao Cấp

LT Xác suất & Thống kê

Đại Số Tuyến Tính

Tâm Lý Học Đại Cương

Tin Học Đại Cương

Kế Toán Đại Cương

Pháp Luật Đại Cương

Marketing Căn Bản

Lý Thuyết Tài Chính Tiền Tệ

Xã Hội Học Đại Cương

Logic Học

Lịch Sử Văn Minh Thế Giới

Cơ Sở Văn Hóa VN

Trắc nghiệm

Trắc nghiệm Triết học

Trắc nghiệm Lịch Sử Đảng

Trắc nghiệm Tư Tưởng Hồ Chí Minh

Trắc nghiệm Kinh Tế Vi Mô

Trắc nghiệm Kinh Tế Vĩ Mô

Bài tập Toán Cao Cấp

Bài tập LT Xác suất & Thống kê

Bài tập Đại Số Tuyến Tính

Trắc nghiệm Tâm Lý Học Đại Cương

Trắc nghiệm Tin Học Đại Cương

Trắc nghiệm Kế Toán Đại Cương

Trắc nghiệm Pháp Luật Đại Cương

Trắc nghiệm Marketing Căn Bản

Trắc nghiệm Lý Thuyết Tài Chính Tiền Tệ

Trắc nghiệm Xã Hội Học Đại Cương

Trắc nghiệm Logic Học

Trắc nghiệm Lịch Sử Văn Minh Thế Giới

Trắc nghiệm Cơ Sở Văn Hóa VN

Tài liệu - Giáo trình

Lý luận chính trị

Khoa học tự nhiên

Khoa học xã hội

Kinh tế - Tài chính

Kỹ thuật - Công nghệ

Cộng nghệ thông tin

Tiếng Anh - Ngoại ngữ

Luận văn - Báo cáo

Kiến trúc - Xây dựng

Kỹ năng mềm

Y tế - Sức khoẻ

Biểu mẫu - Văn bản

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » định Lý Gauss Ma Trận