Bài 1 Trang 9 SGK Giải Tích 12 - Môn Toán - Tìm đáp án
Có thể bạn quan tâm
Xét sự đồng biến, nghịch biến của các hàm số:
LG a
a) \(y = 4 + 3x - x^2\);
Phương pháp giải:
+) Tìm tập xác định của hàm số.
+) Tính đạo hàm của hàm số. Tìm các điểm xi (I =1,2,3,…,n) mà tại đó đạo hàm bằng 0 hoặc không xác định
+) Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên
+) Dựa vào bảng biến thiên để kết luận khoảng đồng biến và nghịch biến của hàm số trên tập xác định của nó. (nếu y’ > 0 thì hàm số đồng biến, nếu y’ < 0 thì hàm số nghịch biến)
Chú ý: Khi kết luận các khoảng đồng biến và nghịch biến của hàm số ta nhớ sử dụng chữ và chứ không được sử dụng kí hiệu hợp.
Lời giải chi tiết:
Tập xác định: \(D=R.\)
Có \(y'=3-2x\Rightarrow y'=0\) \(\Leftrightarrow 3-2x=0\) \(\Leftrightarrow x=\frac{3}{2}.\)
Bảng biến thiên:
Vậy hàm số đồng biến trên khoảng \(\left( -\infty ;\frac{3}{2} \right)\) và nghịch biến trên khoảng \(\left( \frac{3}{2};+\infty \right).\)
LG b
b) \(y ={1 \over 3}x^3\) + \(3x^2-7x - 2\);
Lời giải chi tiết:
\(y=\frac{1}{3}{{x}^{3}}+3{{x}^{2}}-7x-2\)
Tập xác định: \(D=R.\)
Có \(y'={{x}^{2}}+6x-7\) \(\Rightarrow y'=0\Leftrightarrow {{x}^{2}}+6x-7=0\) \(\Leftrightarrow \left[ \begin{align} & x=1 \\ & x=-7 \\ \end{align} \right..\)
Bảng biến thiên:
Vậy hàm số đồng biến trên các khoảng \(\left( -\infty ;-7 \right)\) và \(\left( 1;+\infty \right)\).
Hàm số nghịch biến trên \(\left( -7;\ 1 \right).\)
LG c
c) \(y = x^4\) - \(2x^2\) +\( 3\);
Lời giải chi tiết:
\(y={{x}^{4}}-2{{x}^{2}}+3\)
Tập xác định: \(D=R.\)
Có \(y'=4{{x}^{3}}-4x\) \(\Rightarrow y'=0\Leftrightarrow 4{{x}^{3}}-4x=0\) \(\Leftrightarrow \left[ \begin{align}& x=-1 \\ & x=0 \\ & x=1 \\ \end{align} \right..\)
Bảng biến thiên:
Vậy hàm số đồng biến trên các khoảng \(\left( -1;\ 0 \right)\) và \(\left( 1;+\infty \right).\)
Hàm số nghịch biến trên các khoảng \(\left( -\infty ;-1 \right)\) và \(\left( 0;\ 1 \right).\)
LG d
d) \(y = -x^3\)+ \(x^2\) - \(5\).
Lời giải chi tiết:
\(y=-{{x}^{3}}+{{x}^{2}}-5\)
Tập xác định: \(D=R.\)
Có \(y'=-3{{x}^{2}}+2x\) \(\Rightarrow y'=0\Leftrightarrow -3{{x}^{2}}+2x=0\) \(\Leftrightarrow \left[ \begin{align} & x=0 \\ & x=\frac{2}{3} \\ \end{align} \right..\)
Bảng biến thiên:
Vậy hàm số đồng biến trên khoảng \(\left( 0;\frac{2}{3} \right).\)
Hàm số nghịch biến trên các khoảng \(\left( -\infty ;0 \right)\) và \(\left( \frac{2}{3};+\infty \right).\)
Từ khóa » Giải Bài Tập Sgk Giải Tích 12 Bài 1
-
Giải Bài 1 Trang 9 Sgk Giải Tích 12
-
Giải Toán 12 Bài 1: Sự đồng Biến, Nghịch Biến Của Hàm Số
-
Giải Bài 1 Trang 9 SGK Giải Tích 12 | SGK Toán Lớp 12
-
Giải Bài Tập Trang 9, 10 SGK Giải Tích 12 - Thủ Thuật
-
Bài Tập 1,2,3,4 Trang 9,10 SGK Giải Tích Lớp 12 (Sự đồng Biến, Nghịch ...
-
Giải Bài 1, 2, 3 Trang 9, 10 SGK Giải Tích 12
-
Bài 1 Trang 100 SGK Giải Tích 12 - Nguyên Hàm - TopLoigiai
-
Hướng Dẫn Giải Bài 1 2 3 4 5 Trang 9 10 Sgk Giải Tích 12
-
Toán 12 Bài 1: Sự đồng Biến, Nghịch Biến Của Hàm Số - Hoc247
-
Giải Bài 1 Trang 18 – SGK Môn Giải Tích Lớp 12 - Chữa Bài Tập
-
Bài 1 Trang 18 SGK Giải Tích 12 | Giải Bài Tập Toán 12 - MarvelVietnam
-
Giải Bài Tập Toán 12 Bài 1 Sự đồng Biến Nghịch Biến Của Hàm Số
-
Bài Tập 1 Trang 23 SGK Giải Tích 12 (Bài 3-Toán 12-Giá Trị Lớn Nhất ...
-
Bài 1 Trang 55 Sgk Giải Tích 12: Bài 1. Lũy Thừa