Bài 2: Hàm Nhiều Biến - Cực Trị Hàm Nhiều Biến

YOMEDIA NONE Trang chủ Toán cao cấp Chương 8: Hàm nhiều biến Bài 2: Hàm nhiều biến - Cực trị hàm nhiều biến ADMICRO Lý thuyết 6 FAQ

Nội dung bài giảng Bài 1: Hàm nhiều biến sau đây sẽ giúp các bạn tìm hiểu về dạng toàn phương xác định dấu, điều kiện đủ của cực trị địa phương của cực trị hàm nhiều biến.

ATNETWORK

7. Cực trị hàm nhiều biến

7.1 Định nghĩa

7.2 Dạng toàn phương xác định dấu

7.3 Định lý

7.4 Điều kiện đủ của cực trị địa phương

7.5 Cực trị hàm 2 biến

7.6 Cực trị có điều kiện

Tóm tắt lý thuyết

7. Cực trị hàm nhiều biến

7.1 Định nghĩa

Cho hàm số \(f(x) = f(x_1,x_2,...,x_n)\) xác định trên \(D \subset {R^n}\)\(a = a(x_1,x_2,...,x_n) \in D\). Ta nói f đạt cực đại (cực tiểu) địa phương tại a nếu tồn tại tập \(S = \left\{ {x \in D/d(x,a) < \alpha } \right\}\) sao cho \(f(a) \ge f(x)\) (hoặc \(f(a) \le f(x)),\,\forall x \in S \cap D.\)

Cực đại địa phương hay cực tiểu địa phương gọi chung là cực trị địa phương.

Định lý (điều kiện cần): Cho hàm số \( f(x_1,x_2,...,x_n)\) xác định trên tập mở D chứa x0. Nếu hàm số \( f(x_1,x_2,...,x_n)\) có cực trị địa phương tại \({x_0} = \left( {x_1^0,x_2^0,...,x_n^0} \right)\) và giả sử các đạo hàm riêng cấp một \(\frac{{\partial f}}{{\partial {x_i}}}({x_0})\) tồn tại \(\forall i = \overline {1,n} \) thì:

\(\frac{{\partial f}}{{\partial {x_i}}}({x_0}) = 0,\forall i = \overline {1,n}\)

Những điểm \({x_0} = \left( {x_1^0,x_2^0,...,x_n^0} \right)\) thỏa điều kiện \(\frac{{\partial f}}{{\partial {x_i}}}({x_0}) = 0,\forall i = \overline {1,n}\) được gọi là những điểm dừng. Những điểm dừng là những điểm có thể đạt cực trị.

Ghi chú: Định lý trên chỉ là điều kiện cần. Có khi các đạo hàm riêng tại \({x_0} = \left( {x_1^0,x_2^0,...,x_n^0} \right)\) của f không tồn tại nhưng f vẫn có thể đạt cực trị tại x0.

Ví dụ: \(f(x,y) = {x^3} + {y^3}\)\(\frac{{\partial f}}{{\partial x}}(0,0) = \frac{{\partial f}}{{\partial y}}(0,0) = 0\) nhưng f không đạt cực trị tại (0,0).

Ví dụ: \(f(x,y) = \sqrt {{x^2} + {y^2}}\). Ta có \(\frac{{\partial f}}{{\partial x}}(0,0), \frac{{\partial f}}{{\partial y}}(0,0) \) không tồn tại nhưng f đạt cực tiểu tại (0,0).

7.2 Dạng toàn phương xác định dấu

Hàm \(A({h_1},{h_2},...,{h_n}) = \sum\limits_{i,j = 1}^n {{a_{ij}}{h_i}{h_j}} (*)\) của các biến \({h_1},{h_2},...,{h_n}\)được gọi là dạng toàn phương, các số aij được gọi là hệ số của dạng toàn phương.

Dạng toàn phương (*) được gọi là xác định dương (hoặc xác định âm) nếu \(\forall {h_1},{h_2},...,{h_n}\) thỏa \(\sum\limits_{i,j = 1}^n {h_i^2 > 0}\)\(\sum\limits_{i,j = 1}^n {{a_{ij}}{h_i}{h_j}}\) giá trị dương (hoặc âm).

Dạng toàn phương xác định dương hay xác định âm gọi chung là dạng xác định dấu.

7.3 Định lý

Xét dạng toàn phương \(A\left( {{h_1},{h_2},...,{h_n}} \right) = \sum\limits_{i,j = 1}^n {{a_{ij}}{h_i}} {h_j}\,\,(*)\)

Giả sử \({a_{ij}} = {a_{ij}},\forall i,j = \overline {1,n}\). Khi đó ta có:

i) (*) là dạng toàn phương xác định dương \(\Leftrightarrow {a_{11}} > 0\)

\(\left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right| > 0,\,\,\left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right| > 0,...,\left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{2n}}}\\ \begin{array}{l} ....\\ {a_{n1}} \end{array}&\begin{array}{l} \\ {a_{n2}} \end{array}&\begin{array}{l} \\ {a_{nm}} \end{array} \end{array}} \right| > 0 \)

ii) (*) là dạng toàn phương xác định âm \(\Leftrightarrow {a_{11}} < 0\)

\(\left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right| > 0,\,\,\left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right| < 0,...,{( - 1)^n}\left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{1n}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{2n}}}\\ \begin{array}{l} ....\\ {a_{n1}} \end{array}&\begin{array}{l} \\ {a_{n2}} \end{array}&\begin{array}{l} \\ {a_{nm}} \end{array} \end{array}} \right| > 0 \)

7.4 Điều kiện đủ của cực trị địa phương

Giả sử \(\forall i,j = \overline {1,n} ;\,\frac{{{\partial ^2}f}}{{\partial {x_i}\partial {x_j}}}\) tồn tại và liên tục trong lân cận của điểm dừng \({x_0} = \left( {x_1^0,x_2^0,...,x_n^0} \right)\)

Nếu \({d^2}f({x_0}) = \sum\limits_{i,j = 1}^n {\frac{{{\partial ^2}f}}{{\partial {x_i}\partial {x_j}}}} d{x_i}d{x_j}\) là dạng toàn phương xác định dấu của các biến \(dx_1, dx_2, dx_n\) thì f đạt cực trị địa phương tại x0. Khi đó, nếu \(d^2f(x_0) < 0\) thì f đạt cực đại tại x0 và nếu \(d^2f(x_0) > 0\) thì f đạt cực tiểu tại x0.

7.5 Cực trị hàm 2 biến

Giả sử \(\frac{{{\partial ^2}f}}{{\partial {x^2}}},\frac{{{\partial ^2}f}}{{\partial {y^2}}},\frac{{{\partial ^2}f}}{{\partial x\partial y}}\) tồn tai và liên tục tai \(M_0(x_0, y_0)\). Giả sử \(\frac{{\partial f}}{{\partial x}}({x_0},{y_0}) = \frac{{\partial f}}{{\partial y}}({x_0},{y_0}) = 0\) (M0 là điểm dừng)

Đặt \({a_{11}} = \frac{{{\partial ^2}f}}{{\partial {x^2}}}({x_0},{y_0}),{a_{12}} = \frac{{{\partial ^2}f}}{{\partial x\partial y}}({x_0},{y_0}),{a_{21}} = \frac{{{\partial ^2}f}}{{\partial y\partial x}}({x_0},{y_0})\)\(\Delta ({M_0}) = \left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right| = {a_{11}}{a_{22}} - {({a_{12}})^2}\)

Ta có:

i) Nếu \(\Delta ({M_0}) < 0\) thì f không đạt cực trị tại \((x_0,y_0)\)

ii) \(\left\{ \begin{array}{l} {a_{11}} > 0\\ \Delta ({M_0}) > 0 \end{array} \right.\) thì f đạt cực tiểu tại \((x_0,y_0)\)

iii) \(\left\{ \begin{array}{l} {a_{11}} < 0\\ \Delta ({M_0}) > 0 \end{array} \right.\) thì f đạt cực đại tại \((x_0,y_0)\)

Nhận xét:

  • Khi \(\Delta ({M_0}) > 0\) thì a11 và a22 cùng dấu.
  • Khi \(\Delta ({M_0}) = 0\) thì không có kết luận tổng quát.

Ví dụ:

\(f(x, y) = x^3 + y^3\)\(\Delta \left( {0,0} \right){\rm{ }} =0\) và không đạt cực trị tại (0,0)

\(f=(x,y)=x^4+y^4\)\(\Delta \left( {0,0} \right){\rm{ }} =0\) và đạt cực trị tại (0,0)

Ví dụ: Tìm cực trị (nếu có) của \(u = f(x,y)\) với \(f(x,y)\)

\(i){x^2} + {y^2} + 2x - 6y - 3\)

\(ii){x^3} + {y^2} + 12xy + 1\)

\(iii)\,\,x + \frac{y}{{4x}} + \frac{1}{y} + 2\)

\(iv)\,\,3 - \sqrt {{x^2} + {y^2}}\)

\(v)\,\,xy\sqrt {1 - \frac{{{x^2}}}{4} - \frac{{{y^2}}}{9}}\)

\(vi)\,\,2{x^4} + {y^4} - {x^2} - 2{y^2} + 6\)

\(vii)\,\,{x^4} + {y^4} - {x^2} - {y^2} - 2xy + 5\)

Giải

i) \(u{'_x} = \frac{{\partial u}}{{\partial x}} = 2x + 2,u{'_y} = 2y - 6\)

Tìm điểm dừng \(\left\{ \begin{array}{l} u{'_x} = 0\\ u{'_y} = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = - 1\\ y = 3 \end{array} \right. \)

\(\begin{array}{l} {a_{11}} = u'{'_{xx}} = u{'_{{x^2}}} = \frac{{{\partial ^2}u}}{{\partial {x^2}}}( - 1,3) = 2,\,\,{a_2} = u{'_{{y^2}}} = \frac{{{\partial ^2}u}}{{\partial {y^2}}}( - 1,3) = 2\\ \\ {a_{12}} = \frac{{{\partial ^2}f}}{{\partial x\partial y}}( - 1,3) = \frac{{{\partial ^2}f}}{{\partial y\partial x}}( - 1,3) = 0 \end{array}\)

\(\Rightarrow \Delta ( - 1,3) = \left| {\begin{array}{*{20}{c}} 2&0\\ 0&2 \end{array}} \right| = 4 > 0 \)\(a_{11}>0\)

⇒ Hàm đạt cực tiểu tại (-1,3) và UCT = -13

ii) \(u{'_x} = 3{x^2} + 12y,u{'_y} = 2y + 12x\)

\(\left\{ \begin{array}{l} u{'_x} = 0\\ u{'_y} = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 0\\ y = 0 \end{array} \right. \vee \left\{ \begin{array}{l} x = 24\\ y = - 14 \end{array} \right. \)

\(u'{'_{{x^2}}} = 6x,\,\,u'{'_{{y^2}}} = 2,\,\,u'{'_{xy}} = 12\)

\(\Delta (0,0) = \left| {\begin{array}{*{20}{c}} 0&{12}\\ {12}&2 \end{array}} \right| = - 144 < 0 \Rightarrow u\)

\(\Delta (24, - 144) = \left| {\begin{array}{*{20}{c}} {144}&{12}\\ {12}&2 \end{array}} \right| = 144 > 0 \)\(a_{11}=144>0\)

⇒ hàm đạt cực tiểu tại (24, -144)

Bạn đọc tự giải các ví dụ còn lại

7.6 Cực trị có điều kiện

Bài toán: Tìm cực trị của hàm \(z = f({x_1},{x_2},...,{x_n})\)thỏa mãn điều kiện (với m < n):

\((I):\,\left\{ \begin{array}{l} {g_1}({x_1},{x_2},...,{x_n}) = 0\,\,\,(1)\\ {g_2}({x_1},{x_2},...,{x_n}) = 0\,\,\,(2)\\ ....\\ {g_m}({x_1},{x_2},...,{x_n}) = 0\,\,\,(m) \end{array} \right. \)

Cách 1: Giả sử m < n và ta có

\(\left\{ \begin{array}{l} {g_1}({x_1},{x_2},...,{x_n}) = 0\,\,\\ {g_2}({x_1},{x_2},...,{x_n}) = 0\,\\ ...............\\ {g_m}({x_1},{x_2},...,{x_n}) = 0\,\, \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_1} = {h_1}({x_{m + 1}},{x_{m + 2}},...,{x_n})\\ {x_2} = {h_2}({x_{m + 1}},{x_{m + 2}},...,{x_n})\\ ............\\ {x_m} = {h_m}({x_{m + 1}},{x_{m + 2}},...,{x_n}) \end{array} \right. \)

\(z = f({x_{m + 1}},{x_{m + 2}},...,{x_n})\) là hàm có n - m biến. Khi đó ta tìm cực trị không điều kiện của hàm n - m biến.

Ví dụ: Tìm cực trị của \(f\left( {{x_1},x{}_2,{x_3},{x_4}} \right) = {\rm{ }}2{x_1} + {\rm{ x}}_2^3 + 5x_3^2 - 3{x_4}\)

thỏa điều kiện: \((*):\left\{ \begin{array}{l} {x_1} - x{}_2 + {x_3} - {x_4} = 3\\ {x_1} + x{}_2 - 5{x_3} + 3{x_4} = 1 \end{array} \right. \)

(ta có m = 2, n = 4 )

\((*) \Leftrightarrow \left\{ \begin{array}{l} {x_1} = 2 + 2{x_3} - {x_4}\\ x{}_2 = - 1 + 3{x_3} + 2{x_4} \end{array} \right. \)

Thế vào biểu thức của hàm f ta có: \(f\left( {{x_1},x{}_2,{x_3},{x_4}} \right) = {\rm{ }}2{x_1} + {\rm{ x}}_2^3 + 5x_3^2 - 3{x_4}\)

\(= 2(2 + 2x_3 - x_4) + (- 1 + 3x_3 - 2x_4)^3 + 5x^2_3 - 3x_4 = F(x_3,x_4) \)

Định lý (điều kiện cần): Giả sử \(f,g_1,g_2,...,g_m\) có các đạo hàm riêng cấp 1 tại \({x_0} = \left( {x_1^0,x_2^0,x_3^0,...,x_n^0} \right)\) và f đạt cực trị tại x0. Khi đó tồn tại \(\lambda _1^0,\lambda _2^0,...,\lambda _m^0\) sao cho \(\frac{{\partial \phi ({x_0})}}{{\partial {\lambda _j}}} = {g_j}({x_0}) = 0,\,\forall j = \overline {1,m}\)\(\frac{{\partial \phi }}{{\partial {x_k}}}(x_1^0,x_2^0,...,x_n^0,\lambda _1^0,\lambda _2^0,...,\lambda _m^0) = 0,\forall k = \overline {1,n}\)

Do đó để tìm cực trị có điều kiện, ta giải hệ phương trình:

\(\left\{ \begin{array}{l} \frac{{\partial \phi }}{{\partial {\lambda _i}}} = 0,j = \overline {1,m} \\ \frac{{\partial \phi }}{{\partial {x_k}}} = 0,k = \overline {1,n} \end{array} \right. \)

Định lý (điều kiện đủ)

Giả sử điều kiện cần của định lý trên được thỏa và \(\frac{{{\partial ^2}f}}{{\partial {x_i}\partial {x_j}}}\) tồn tai, liên tục tai điểm dừng x0 ứng với \(\lambda _0=(\lambda _1^0,\lambda _2^0,...,\lambda _m^0)\). Đặt \({a_{ij}} = \frac{{{\partial ^2}\phi ({x_0}{\lambda _0})}}{{\partial {x_i}\partial {x_j}}},{b_{ij}} = \frac{{\partial {g_j}}}{{\partial {x_i}}} = \frac{{{\partial ^2}\phi }}{{\partial {x_i}\partial {\lambda _j}}}({x_0})\)

\({H_k} = \left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}} \cdots {a_{1k}}}&{{b_{11}}}&{{b_{12}} \cdots {b_{1m}}}\\ {{a_{21}}}&{{a_{22}} \cdots {a_{2k}}}&{{b_{21}}}&{{b_{22}} \cdots {b_{2m}}}\\ {.....}&{}&{}&{}\\ {{a_{k1}}}&{{a_{k2}} \cdots {a_{kk}}}&{{b_{k1}}}&{{b_{k2}} \cdots {b_{km}}}\\ {{b_{11}}}&{{b_{21}} \cdots {b_{k1}}}&0&{0 \cdots 0}\\ {{b_{12}}}&{{b_{22}} \cdots {b_{k2}}}&0&{0 \cdots 0}\\ {....}&{}&{}&{}\\ {{b_{1m}}}&{{b_{2m}} \cdots {b_{km}}}&0&{0 \cdots 0} \end{array}} \right|;k = 1,2,...,n \)

Đặt Hb là ma trận của Hn (nghĩa là Hn = |Hb|). Ta có :

i) Nếu \({( - 1)^m}{H_k} > 0,\forall k = \overline {m + 1,n} \Rightarrow f\) đạt cực tiểu thỏa điều kiện (I) tại x0

ii) Nếu \({( - 1)^k}{H_k} > 0,\forall k = \overline {m + 1,n} \Rightarrow f\) đạt cực đại thỏa điều kiện (I) tại x0.

Ví dụ 1: n = 4, m = 1

\({H_2} = \left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{\frac{{\partial g}}{{\partial {x_1}}}}\\ {{a_{21}}}&{{a_{22}}}&{\frac{{\partial g}}{{\partial {x_2}}}}\\ {\frac{{\partial g}}{{\partial {x_1}}}}&{\frac{{\partial g}}{{\partial {x_2}}}}&0 \end{array}} \right|;\,\,{H_3} = \left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{\frac{{\partial g}}{{\partial {x_1}}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{\frac{{\partial g}}{{\partial {x_2}}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{\frac{{\partial g}}{{\partial {x_3}}}}\\ {\frac{{\partial g}}{{\partial {x_1}}}}&{\frac{{\partial g}}{{\partial {x_2}}}}&{\frac{{\partial g}}{{\partial {x_3}}}}&0 \end{array}} \right| \); \({H_4} = \left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}}&{\frac{{\partial g}}{{\partial {x_1}}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}}&{\frac{{\partial g}}{{\partial {x_2}}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}&{\frac{{\partial g}}{{\partial {x_3}}}}\\ {{a_{41}}}&{{a_{42}}}&{{a_{43}}}&{{a_{44}}}&{\frac{{\partial g}}{{\partial {x_4}}}}\\ {\frac{{\partial g}}{{\partial {x_1}}}}&{\frac{{\partial g}}{{\partial {x_2}}}}&{\frac{{\partial g}}{{\partial {x_3}}}}&{\frac{{\partial g}}{{\partial {x_4}}}}&0 \end{array}} \right| \)

Ta có:

i) \(H_2<0,H_3<0,H_4<0\)⇒ f đạt cực tiểu

ii) \(H_2>0,H_3<0,H_4>0\)⇒ f đạt cực đại

Ví dụ 2: n = 3, ra = 1. Ta có:

i) H2 < 0, H3 < 0 ⇒ f đạt cực tiểu

ii) H2 > 0, H3 < 0 ⇒ f đạt cực đại.

Ví du 3: n = 4, ra = 1. Ta có :

i) H3 > 0, H4 > 0 ⇒ f đạt cực tiểu

ii) H3 < 0, H4 > 0 ⇒ f đạt cực đại.

Ví dụ:Tìm cực trị của hàm \(f(x,y,z) = 2x + y + 3z \)thỏa mãn điều kiện \(x^2 + 4y^2 - 2z^2 =35\) (1)

Cách 1: Dùng bất đẳng thức BCS.

Cách 2: Đặt \(g(x,y,z)=x^2+4y^2+2z^2-35\)

Đặt \(F(x,y,z,\lambda ) = f(x,y,z) + \lambda g(x,y,z) = 2x + y + 3z + \lambda ({x^2} + 4{y^2} + 2{z^2} - 35)\)

\(\begin{array}{l} \frac{{\partial F}}{{\partial x}} = 2 + 2\lambda x;\frac{{\partial F}}{{\partial y}} = 1 + 8\lambda x\\ \\ \frac{{\partial F}}{{\partial z}} = 3 + 4\lambda x;\frac{{\partial F}}{{\partial \lambda }} = g = {x^2} + 4{y^2} + 2{z^2} - 35\\ \\ \frac{{{\partial ^2}F}}{{\partial {x^2}}} = 2\lambda ;\frac{{{\partial ^2}F}}{{\partial {y^2}}} = 8\lambda ;\frac{{{\partial ^2}F}}{{\partial {z^2}}} = 4\lambda ;\frac{{{\partial ^2}F}}{{\partial {\lambda ^2}}} = 0\\ \\ \frac{{{\partial ^2}F}}{{\partial x\partial y}} = \frac{{{\partial ^2}F}}{{\partial x\partial z}} = \frac{{{\partial ^2}F}}{{\partial y\partial z}} = 0;\frac{{{\partial ^2}F}}{{\partial \lambda \partial x}} = \frac{{\partial g}}{{\partial x}} = 2x\\ \\ \frac{{{\partial ^2}F}}{{\partial \lambda \partial y}} = \frac{{\partial g}}{{\partial y}} = 8y;\frac{{{\partial ^2}F}}{{\partial \lambda \partial z}} = \frac{{\partial g}}{{\partial z}} = 4z \end{array}\)

Điều kiện cần để F đạt cực trị tại \((x,y,z,\lambda )\)

\(\left\{ \begin{array}{l} \frac{{\partial F}}{{\partial \lambda }} = g = {x^2} + 4{y^2} + 2{z^2} - 35 = 0\\ \frac{{\partial F}}{{\partial x}} = 2 + 2\lambda x = 0\\ \frac{{\partial F}}{{\partial y}} = 1 + 8\lambda y = 0\\ \frac{{\partial F}}{{\partial z}} = 3 + 4\lambda z = 0 \end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l} x = \frac{{ - 1}}{\lambda } = 8y\\ y = \frac{{ - 1}}{{8\lambda }}\\ z = \frac{{ - 3}}{{4\lambda }} = 6y\\ 64{y^2} + 4{y^2} + 2.36{y^2} - 35 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 4\\ y = \frac{1}{2}\\ z = 3\\ \lambda = \frac{{ - 1}}{4} \end{array} \right.\,hay\,\left\{ \begin{array}{l} x = - 4\\ y = - \frac{1}{2}\\ z = - 3\\ \lambda = \frac{1}{4} \end{array} \right. \)

i) Xét tại \((x,y,z,\lambda ) = \left( {4,\frac{1}{2},3, - \frac{1}{4}} \right)\)

\(\frac{{\partial g}}{{\partial x}}(4;\frac{1}{2};3) = 8;\,\,\frac{{\partial g}}{{\partial y}}(4;\frac{1}{2};3) = 4;\,\,\frac{{\partial g}}{{\partial z}}(4;\frac{1}{2};3) = 12\)

\(\begin{array}{l} {a_{11}} = \frac{{{\partial ^2}F}}{{\partial {x^2}}}(4;\frac{1}{2};3;\frac{{ - 1}}{4}) = \frac{{ - 1}}{2};\,\,\\ \\ {a_{22}} = \frac{{{\partial ^2}F}}{{\partial {y^2}}}(4;\frac{1}{2};3;\frac{{ - 1}}{4}) = - 2;\,\\ \\ \,{a_{33}} = \frac{{{\partial ^2}F}}{{\partial {z^2}}}(4;\frac{1}{2};3;\frac{{ - 1}}{4}) = - 1 \end{array} \)

\({a_{12}} = {a_{21}} = {a_{31}} = {a_{13}} = {a_{23}} = {a_{32}} = 0\)

Ta có: \({H_b} = \left( {\begin{array}{*{20}{c}} { - 1/2}&0&0&8\\ 0&{ - 2}&0&4\\ 0&0&{ - 1}&{12}\\ 8&4&{12}&0 \end{array}} \right) \)

\({H_1} = - 64;{H_2} = \left| {\begin{array}{*{20}{c}} { - 1/2}&0&8\\ 0&{ - 2}&4\\ 8&4&0 \end{array}} \right| > 0;\,{H_3} = \left| {\begin{array}{*{20}{c}} { - 1/2}&0&0&8\\ 0&{ - 2}&0&4\\ 0&0&{ - 1}&{12}\\ 8&4&{12}&0 \end{array}} \right| < 0 \)

\(\Rightarrow {( - 1)^k}{H_k} > 0,\forall k = \overline {2,3} \Rightarrow f\)đạt cực đại thỏa điều kiện \(x^2+4y^2+2z^2=35\)tại \(\left( {4;\frac{1}{2};3} \right)\)

ii) Tương tự xét tại \((x,y,z,\lambda ) = \left( { - 4; - \frac{1}{2}; - 3;\frac{1}{4}} \right)\)ta có: \({( - 1)^m}{H_k} = - {H_k} > 0,\forall k = \overline {2,3}\)

⇒ f đạt cực tiểu thỏa điều kiện \({x^2} + 4{y^2} + 2{z^2} = 35\)tại \(\left( {-4;-\frac{1}{2};-3} \right)\)

Ví dụ:

i) Tìm cực trị của \(u=x+y+z\) với \(xyz = 125\)

ii) Tìm cực trị của \(u = x + y\) với điều kiện \({x^2} + \frac{{{y^2}}}{4} + 2{z^2} = 1\)

Tìm cực trị của \(u = x + y + z + t\) với điều kiện \(16-xyzt=0\)

Giải: Dành cho bạn đọc.

QUẢNG CÁO NONE

Bài học cùng chương

Bài 1: Hàm nhiều biến - Khái niệm hàm nhiều biến Bài 1: Hàm nhiều biến - Khái niệm hàm nhiều biến ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH ĐẠI HỌC

Môn học

Triết học

Lịch Sử Đảng

Tư Tưởng Hồ Chí Minh

Kinh Tế Vi Mô

Kinh Tế Vĩ Mô

Toán Cao Cấp

LT Xác suất & Thống kê

Đại Số Tuyến Tính

Tâm Lý Học Đại Cương

Tin Học Đại Cương

Kế Toán Đại Cương

Pháp Luật Đại Cương

Marketing Căn Bản

Lý Thuyết Tài Chính Tiền Tệ

Xã Hội Học Đại Cương

Logic Học

Lịch Sử Văn Minh Thế Giới

Cơ Sở Văn Hóa VN

Trắc nghiệm

Trắc nghiệm Triết học

Trắc nghiệm Lịch Sử Đảng

Trắc nghiệm Tư Tưởng Hồ Chí Minh

Trắc nghiệm Kinh Tế Vi Mô

Trắc nghiệm Kinh Tế Vĩ Mô

Bài tập Toán Cao Cấp

Bài tập LT Xác suất & Thống kê

Bài tập Đại Số Tuyến Tính

Trắc nghiệm Tâm Lý Học Đại Cương

Trắc nghiệm Tin Học Đại Cương

Trắc nghiệm Kế Toán Đại Cương

Trắc nghiệm Pháp Luật Đại Cương

Trắc nghiệm Marketing Căn Bản

Trắc nghiệm Lý Thuyết Tài Chính Tiền Tệ

Trắc nghiệm Xã Hội Học Đại Cương

Trắc nghiệm Logic Học

Trắc nghiệm Lịch Sử Văn Minh Thế Giới

Trắc nghiệm Cơ Sở Văn Hóa VN

Tài liệu - Giáo trình

Lý luận chính trị

Khoa học tự nhiên

Khoa học xã hội

Kinh tế - Tài chính

Kỹ thuật - Công nghệ

Cộng nghệ thông tin

Tiếng Anh - Ngoại ngữ

Luận văn - Báo cáo

Kiến trúc - Xây dựng

Kỹ năng mềm

Y tế - Sức khoẻ

Biểu mẫu - Văn bản

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Cực Trị Của Hàm Hai Biến