Bài 2 Trang 66 SGK Toán 8 Tập 1 - Tìm Đáp Án
Có thể bạn quan tâm
Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác.
LG a.
Tính các góc ngoài của tứ giác ở hình 7a.
Phương pháp giải:
Áp dụng định lý: Tổng các góc trong tứ giác bằng \({360^0}\)
Lời giải chi tiết:
\(\widehat A + \widehat B + \widehat C + \widehat D = {360^0}\) (định lý tổng các góc của tứ giác)
\(\begin{array}{l}\widehat {{D}}= {360^0} - \left( {\widehat A + \widehat B + \widehat C} \right)\\= {360^0} - \left( {{75}^0+{{90}^0} + {{120}^0}} \right)\\= {360^0} - {285^0}\\= {75^0}\end{array}\)
Ta có:
+) \(\widehat {BAD} + \widehat {{A_1}} = {180^0}\) (2 góc kề bù)
\(\begin{array}{l}\widehat {{A_1}} = {180^0} - \widehat {BAD}\\= {180^0} - {75^0} = {105^0}.\end{array}\)
+) \(\widehat {{B_1}} + \widehat {CBA} = {180^0}\) (2 góc kề bù)
\(\begin{array}{l}\widehat {{B_1}} = {180^0} - \widehat {CBA}\\= {180^0} - {90^0} = {90^0}.\end{array}\)
+) \(\widehat {{C_1}} + \widehat {BCD} = {180^0}\) (2 góc kề bù)
\(\begin{array}{l}\widehat {{C_1}} = {180^0} - \widehat {BC{\rm{D}}}\\= {180^0} - {120^0} = {60^0}.\end{array}\)
+) \(\widehat {{D_1}} + \widehat {ADC} = {180^0}\)
\(\begin{array}{l}\widehat {{D_1}} = {180^0} - \widehat {{\rm{ADC}}}\\= {180^0} - {75^0} = {105^0}.\end{array}\)
LG b.
Tính tổng các góc ngoài của tứ giác ở hình 7b (tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài): \(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}} = ?\)
Phương pháp giải:
Áp dụng định lý: Tổng các góc trong tứ giác bằng \({360^0}\)
Lời giải chi tiết:
\(\widehat {{A}} + \widehat {{B}} + \widehat {{C}} + \widehat {{D}} = {360^0}\)
(định lý tổng 4 góc trong tứ giác)
\(\begin{array}{l}\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}}\\ = \left( {{{180}^0} - \widehat {{A}}} \right) + \left( {{{180}^0} - \widehat {{B}}} \right) \\\;\;\;+ \left( {{{180}^0} - \widehat {{C}}} \right) + \left( {{{180}^0} - \widehat {{D}}} \right)\\= {180^0}.4 - \left( {\widehat {{A}} + \widehat {{B}} + \widehat {{C}} + \widehat {{D}}} \right)\\= {720^0} - {360^0} = {360^0}.\end{array}\)
LG c.
Có nhận xét gì về tổng các góc ngoài của tứ giác?
Phương pháp giải:
Áp dụng tính chất: Tổng hai góc kề bù bằng \({180^0}\)
Lời giải chi tiết:
Nhận xét: Tổng các góc ngoài của tứ giác bằng \({360^0}\)
Từ khóa » Bài Tập 2 Sgk Toán 8 Trang 66
-
Bài 2 Trang 66 Toán 8 Tập 1
-
Góc Kề Bù Với Một Góc Của Tứ Giác Gọi Là Góc Ngoài Của Tứ Giác
-
Bài 2 Trang 66 SGK Toán 8 Tập 1
-
Giải Bài 2 Trang 66 – SGK Toán Lớp 8 Tập 1
-
Bài 2 Trang 66 SGK Toán 8 Tập 1 - TopLoigiai
-
Giải Toán Lớp 8 SGK Tập 2 Trang 65, 66, 67, 68 Chuẩn Nhất
-
Bài 2 Trang 66 SGK Toán 8 Tập 1 - CungHocVui
-
Giải Bài 2 Trang 66 SGK Toán 8 Tập 1 - YouTube
-
Bài 2 Trang 66 Sgk Toán 8 Tập 1
-
Bài 2 Trang 66 Sgk Toàn 8 Tập 1 - Học Trực Tuyến
-
Giải Bài 1, 2, 3, 4, 5 Trang 66, 67 Sgk Toán Lớp 8 Tập 1
-
Bài 1,2,3,4,5 Trang 66,67 SGK Toán 8 Tập 1: Tứ Giác
-
Bài 2 Trang 66 SGK Toán 8 Tập 1 - MarvelVietnam
-
Bài 2 Trang 66 Toán 8 Tập 1 | Hay Nhất Giải Bài Tập Toán Lớp 8.