Bài 4. Hệ Trục Tọa độ - Củng Cố Kiến Thức
Có thể bạn quan tâm
1. Trục và độ dài đại số trên trục
a) Trục toạ độ (hay gọi tắt là trục) là một đường thẳng trên đó đã xác định một điểm O gọi là điểm gốc và một vectơ đơn vị $\overrightarrow e $.
Ta kí hiệu trục đó là (O ; $\overrightarrow e $)
![]()
b) Cho M là một điểm tuỳ ý trên trục (O ; $\overrightarrow e $). Khi đó có duy nhất một số k sao cho $\overrightarrow {OM} = k\overrightarrow e $. Ta gọi số k đó là toạ độ của điểm M đối với trục đã cho.
c) Cho hai điểm A và B trên trục (O ; $\overrightarrow e $). Khi đó có duy nhất số a sao cho $\overrightarrow {AB} = a\overrightarrow e $. Ta gọi số a đó là độ dài đại số của vectơ $\overrightarrow {AB} $ đối với trục đã cho và kí hiệu $a = \overline {AB} $.
Nhận xét
Nếu $\overrightarrow {AB} $ cùng hướng với $\overrightarrow e $ thì $\overline {AB} = AB$, còn nếu $\overrightarrow {AB} $ ngược hướng với $\overrightarrow e $ thì $\overline {AB} = - AB$.
Nếu hai điểmA và B trên trục (O ; $\overrightarrow e $) có toạ đô lần lượt là a và b thì $\overline {AB} = b - a$.
2. Hệ trục tọa độ
a) Định nghĩa
Hệ trục toạ độ $\left( {O;\overrightarrow i ;\overrightarrow j } \right)$ gồm hai trục $\left( {O;\overrightarrow i } \right)$ và $\left( {O;\overrightarrow j } \right)$ vuông góc với nhau. Điểm gốc O chung của hai trục gọi là gốc toạ độ. Trục $\left( {O;\overrightarrow i } \right)$được gọi là trục hoành và kí hiệu là Ox, trục $\left( {O;\overrightarrow j } \right)$ được gọi là trục tung và kí hiệu là Oy. Các vectơ $\overrightarrow i $ và $\overrightarrow j $ là các vectơ đơn vị trên Ox và Oy và $\left| {\overrightarrow i } \right| = \left| {\overrightarrow j } \right| = 1$. Hệ trục toạ độ $\left( {O;\overrightarrow i ;\overrightarrow j } \right)$còn được kí hiệu là Oxy.

b) Tọa độ của vectơ
$\overrightarrow u = \left( {x;y} \right) \Leftrightarrow \overrightarrow u = x\overrightarrow i + y\overrightarrow j $
Nhận xét
Từ định nghĩa toạ độ của vectơ, ta thấy hai vectơ bằng nhau khi và chỉ khi chúng có hoành độ bằng nhau và tung độ bằng nhau.
Nếu $\overrightarrow u = \left( {x;y} \right);\overrightarrow {u'} = \left( {x';y'} \right)$ thì
$\overrightarrow u = \overrightarrow {u'} \Leftrightarrow \left\{ \begin{array}{l} x = x'\\ y = y' \end{array} \right.$
Như vậy, mỗi vectơ được hoàn toàn xác định khi biết toạ độ của nó.
c) Toạ độ của một điểm
Trong mặt phẳng toạ độ Oxy cho một điểm M tuỳ ý. Toạ độ của vectơ $\overrightarrow {OM} $ đối với hệ trục Oxy được gọi là toạ độ của điểm M đối với hệ trục đó.

$M = \left( {x;y} \right) \Leftrightarrow \overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j $
Chú ý: nếu $M{M_1} \bot Ox,M{M_2} \bot Oy$ thì $x = \overline {O{M_1}} ,y = \overline {O{M_2}} $.
d) Liên hệ giữa tọa độ của điểm và tọa độ của vectơ trong mặt phẳng
Cho điểm $A\left( {{x_A};{y_A}} \right)$ và $B\left( {{x_B};{y_B}} \right)$. Ta có:
$\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A}} \right)$
3. Tọa độ của các vectơ $\overrightarrow u + \overrightarrow v ,\overrightarrow u - \overrightarrow v ,k\overrightarrow u $
Ta có các công thức sau:
Cho $\overrightarrow u = \left( {{u_1};{u_2}} \right),\overrightarrow v = \left( {{v_1};{v_2}} \right)$. Khi đó:
$\begin{gathered} \overrightarrow u + \overrightarrow v = \left( {{u_1} + {v_1};{u_2} + {v_2}} \right); \hfill \\ \overrightarrow u - \overrightarrow v = \left( {{u_1} - {v_1};{u_2} - {v_2}} \right); \hfill \\ k\overrightarrow u = \left( {k{u_1};k{u_2}} \right),k \in R \hfill \\ \end{gathered} $
4. Tọa độ trung điểm của đoạn thẳng. Tọa độ của trọng tâm tam giác
a) Cho đoạn thẳng AB có $A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)$. Ta dễ dàng chứng minh được toạ độ trung điểm $I\left( {{x_I};{y_I}} \right)$ của đoạn thẳng AB là :
${x_I} = \frac{{{x_A} + {x_B}}}{2};{y_I} = \frac{{{y_A} + {y_B}}}{2}$
b) Cho tam giác ABC có $A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right),C\left( {{x_C};{y_C}} \right)$. Khi đó toạ đô của trọng tâm $G\left( {{x_G};{y_G}} \right)$ của tam giác ABC được tính theo công thức:
${x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3};{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}$
Từ khóa » Toạ độ Của điểm Và Vecto
-
Tọa độ Vectơ - Điểm
-
Tìm Tọa độ Của Vecto, Của điểm Cực Hay - Toán Lớp 12
-
Tọa độ Của Vectơ - Tọa độ Của điểm
-
Lý Thuyết Hệ Trục Tọa độ | SGK Toán Lớp 10
-
Tìm Tọa độ điểm, Tọa độ Vectơ Trên Mặt Phẳng Oxy
-
Các Dạng Bài Tập Về Toạ độ Của Vectơ, Toạ độ Của Một điểm Và Cách ...
-
TÌM TỌA ĐỘ CỦA ĐIỂM VÀ TỌA ĐỘ CỦA VECTƠ. BÀI TẬP TRỤC ...
-
Dạng 1: Toạ độ Vectơ - Toạ độ điểm | 7scv
-
Tọa độ Véc Tơ Trong Hệ Trục Oxyz - Cộng đồng Học ...
-
50 Bài Toán Về Tọa độ điểm, Tọa độ Vectơ (có đáp án 2022) – Toán 12
-
Tổng Hợp Công Thức Toán Học Cấp 3 Phần Vecto
-
Xác định Tọa độ điểm, Tọa độ Vectơ
-
Toán 12 - Bài 1: Toạ độ Của điểm Và Vectơ Trong Không Gian
-
Toán 12 - Ôn Tập: Tìm Tọa độ Vectơ, Tọa độ điểm Thuộc đường – Mặt